YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
Page 1: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id
Bayu
Typewriter
Bayu
Typewriter
Bayu
Typewriter
Page 2: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

i

KATA PENGANTAR

E-book ini berisi uraian dasar perancangan utilitas untuk suatu kompleks bangunan beserta lingkunganya, baik untuk bangunan bertingkat rendah maupun bangunan bertingkat tinggi.

E-book ini merupakan bacaan on-line untuk membantu mahasiswa Fakultas Teknik Sipil dan Perencanaan jurusan Teknik Arsitektur dalam menyelesaikan pendidikanya pada semester 4,5 dan 6 khususnya pada mata kuliah Utilitas.

Mata kuliah Utilitas bertujuan memberikan uraian tentang kenyamanan, kelengkapan,fasilitas dalam bangunan dan mengkoordinasikan dengan bidang-bidang mata kuliah yang lain. Karena itu buku ini menguraikan masalah-masalah teknis dalam bangunan secara rinci.

Mudah-mudahan dengan uraian ini, mahasiswa dapat menyelesaikan perancangan berbagai bangunan dengan sempurna. Kritik, saran dan usulan dari pembaca maupun simpatisan akan kami hargai demi kesempurnaan buku ini.

Jakarta, September 2013

Agung Wahyudi, ST., MT

Page 3: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

ii

DAFTAR ISI

Kata pengantar iDaftar isi ii

BAB 1. PENYEDIAAN AIR BERSIH DALAM BANGUNAN1. Penyediaan air bersih 1

1.1. Air 11.2. Kualitas air 11.3. Problem pada kualitas air 3 1.4. Pompa-pompa penyedia air bersih 5

1.4.1. Pompa sumur dangkal 51.4.2. Pompa jet 61.4.3. Pompa submersible 61.4.4. Pompa sentrifugal 7

2. Perancangan air bersih 82.1. Sistem penyediaan air 8

2.1.1. Sistim sambungan langsung 92.1.2. Sistim tangki atap 102.1.3. Sistim tangki tekan 11

2.2. Pemasangan tangki air 122.2.1. Syarat-syarat tangki air bersih 122.2.2. Pemasangan tangki di luar bangunan152.2.3. Pemasangan tangki di dalam bangunan 162.2.4. Konstruksi tangki air 192.2.5. Hubungan tangki bawah dengan tangki atas 22

2.3. Sistim distribusi 242.4. Pengamanan sistim 25

2.4.1. Pencegahan pencemaran 262.4.2. Pencegahan pukulan air 292.4.3. Tekanan, kecepatan dan laju aliran air 32

3. Perhitungan kebutuhan air dan kapasitas alat 443.1. Penaksiran kebutuhan air 44

3.1.1. Penaksiran berdasarkan jumlah penghuni 453.1.2. Penaksiran berdasarkan luas dan kepadatan 463.1.3. Penaksiran berdasarkan unit beban alat plambing 47

3.2. Perhitungan kapasitas alat 483.2.1. Kapasitas tangki atap 483.2.2. Kapasitas tangki bawah 50

BAB 2. PENYEDIAAN AIR PANAS DALAM BANGUNAN1. Air Panas 532. Standar temperatur air panas 543. Kebutuhan dan laju air panas 64

Page 4: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

iii

3.1. Kebutuhan berdasarkan jumlah penghuni 643.2. Kebutuhan berdasarkan jenis dan jumlah alat plambing 653.3. Kebutuhan berdasarkan beban unit alat plambing 66

4. Sistem penyediaan air panas 674.1. Sistem pemanasan dengan instalasi lokal 674.2. Pemanasan dengan instalasi sentral 68

5. Beberapa hal penting dalam sistim 765.1. Kemiringan pipa 765.2 Perbandingan pipa sirkulasi gravitasi tunggal dan ganda 765.3 Perbedaan Sirkulasi Gravitasi dengan sirkulasi

pompa765.4 Reverse return untuk keseragaman temperature 775.5 Pipa dan tangki ekspansi 77

6 Konstruksi tangki pemanas sentral80

BAB 3. PEMBUANGAN AIR KOTOR DALAM BANGUNAN1. Klasifikasi sistem pembuangan 832. Efek sifon dan peranan pipa ven pada sistem 863. Bagian – bagian sistem pembuangan 88

3.1. Alat plambing untuk pembuangan 883.2. Pipa-pipa pembuangan 88

3.2.1. Kemiringan pipa buangan dan kecepatan aliran 903.2.2. Syarat umum pipa pembuangan 903.2.3. Ukuran pipa pembuangan 95

3.3. Perangkap 1013.3.1. Syarat – syarat perangkap 101

3.3.2. Jenis perangkap101 3.3.3. Perangkap yang di larang 103

3.3.4. Pengecualian pemasangan perangkap 1033.4. Penangkap / interceptor 104

3.4.1. Persyaratan penangkap 104 3.4.2. Jenis penangkap 104

3.5. Sistem ven 107 3.5.1. Jenis sistem ven 107 3.5.2. Persyaratan pipa ven 110 3.5.3. Ukuran pipa ven 112

3.6. Lubang pembersih / clean out 116 3.6.1. Syarat lubang pembersih 116 3.6.2. Ukuran lubang pembersih 117 3.6.3. Pemasangan 117

3.7. Bak penampungan dan pompa air kotor 118 3.7.1. Syarat – syarat bak penampungan air kotor 119 3.7.2. Pompa pembuangan 120

3.8. Tangki septik dan rembesan 122 3.8.1. Syarat jarak 123 3.8.2. Tangki septic, syarat dan ukuran 124 3.8.3. Resapan 126 3.8.3.1. Sumur resapan 126

Page 5: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

iv

3.8.3.2. Bidang resapan 128

BAB 4. PEMBUANGAN AIR HUJAN DALAM BANGUNAN1. Air Hujan 1352. Pengendalian Air Hujan di bangunan 136

2.1 Pembuangan Air Hujan dari Atap 1372.2 Ukuran Pipa 138

2.2.1 Mencari Ukuran Pipa Berdasarkan Data Curah Hujan 138

2.2.2 Mencari Ukuran Pipa Bila Curah Hujan TidakDiketahui 139

2.2.3 Contoh Penghitungan Ukuran Pipa 140 3. Drainase tapak 142

3.1 Drainase permukaan 1423.1.1 Sheet flow dan alat perlengkapannya 1423.1.2 Kemiringan elemen luar bangunan 1483.1.3 Ukuran pipa pembuangan air hujan 149

3.2 Drainase bawah tanah 1523.2.1 Drainase lingkungan 1533.2.2 Foolting Drain 1533.2.3 Drainase untuk bidang khusus 156

3.3 Contoh aplikasi drainase tapak 157

BAB 5. PENANGGULANGAN KEBAKARAN 1. Umum160

1.1. Masalah kebakaran di perkotaan. 160 1.2. Peraturan dan perundangan yang berlaku 1611.3. Teori api 1611.4. Metoda umum pemadaman api 1621.5. Pola penyebaran api 1631.6. Bahaya akibat produk kebakaran 165

2. Penataan lingkungan untuk proteksi kebakaran 1663. Beberapa ketentuan proteksi kebakaran pada bangunan 1704. Sistim dan alat proteksi kebakaran 172

4.1. Sistim isarat pencegahan dini 1721. Detektor manual 1722. Detektor panas 1733. Detektor ion 1734. Detektor asap 1735. Detektor nyala api 174

4.2. Air untuk melawan kebakaran 1741. Sistim instalasi air untuk kebakaran dalam gedung 1742. Fire Hose 1773. Sprinkler 178

4.3. Pengendalian asap kebakaran 183

Page 6: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

v

BAB 6. TRANSPORTASI VERTIKAL DALAM BANGUNAN

1 Elevator 1851.1. Kinerja elevator 1861.2. Peralatan elevator 1871.3. Kabin (car) dan rel. 1871.4. Mesin elevator 1901.5. Penyusunan roda penggerak, kabel dan mesin elevator 1931.6. Kabel penggantung 1941.7. Alat-alat pengaman elevator 1951.8. Pintu.elevator 1961.9. Sistim. kontrol elevator 1991.10. Menghitung jumlah kebutuhan elevator 200

1.10.1. Interval dan Waiting time 2001.10.2. Handling capacity 2011.10.3. Travel time / average trip 2021.10.4. Round trip time 2031.10.5. Kecepatan elevator 2041.10.6. Populasi gedung 2061.10.7. Contoh penghitungan jumlah devator 207

1. 11. Lokasi dan ukuran ruang 2081.11.1. Hall. elevator 2081. 11.2. Shaft 2091. 11.3. Ruang mesin 210

2. Eskalator 2222.1 Kapasitas angkut 2222.2. Kebutuhan ruang 2232.3. Keamanan 2232.4. Konfigurasi crisscross dan paralel. 2242.5. Desain eskalator 2252.6. Komponen dan ukuran eskalator 228

2.6.1. Ukuran panjang eskalator 2282.6.2. Ukuran lebar eskalator 2292.6.3. Truss 2292.6.4. Motor penggerak dan kontrol 22302.6.5. Handrail. 2312.6.6 Tangga 232

Daftar Pustaka

Page 7: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 0

Page 8: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 1

1. Penyediaan air bersih

1.1. Air Air merupakan kombinasi dua elemen dasar; hidrogen dan oksigen;yang

dapat dijumpai sebagai:a. cairan 830 kali berat dari udarab. bentuk padat esc. uap 133 kali lebih ringan dari udara

Merupakan kebutuhan pokok manusia. Dengan adanya air yang cukup dan sehat membantu terlaksananya

penyehatan masyarakat. Untuk mencukupi kebutuhan air bersih, diambil dari alam; sumur, sungai,

mata air, air hujan dan sebagainya.

Jenis sumber air Keuntungan KerugianAir hujan Merupakan air lunak dan

hanya baik untuk daerah yang mempunyai curah hujan tinggi.

Membutuhkan penampungan yang besar, sukar disimpan dalam jangka waktu lama, menjadi tempat telur nyamuk.

Air permukaan Mudah diambil dengan alat sederhana.

Berbahaya karena banyak terkontaminasi bakteri, zat organik dan non organik.

Air tanah dalam Tersedia dibanyak tempat;diambil dengan peralatan mekanis, sedikit terkontaminasi dibanding air tanah permukaan

Mengandung zat organik dan kimia dalam berbagai kadar yang membutuhkan pengolahan tertentu;sedimentasi, kimiawi, filtrasi, aerasi

Penyediaan air bersih, terutama di kota, pada prinsipnya disediakan oleh pemerintah (PDAM).Namun bila tidak mencukupi atau tidak terjangkau distribusinya, maka diusahakan sendiri (privat) dengan pembuatan sumur-sumur terbuka maupun sumur bor.

1.2. Kualitas airKualitas air harus memenuhi 3 syarat :a. Syarat fisik

Tidak berwarna, tidak berbau.b. Syarat kimia

Tidak mengandung zat kimia yang merugikan manusia (racun) dan tidak mengurangi efektivitas distribusi pipa-pipa.

Page 9: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 2

c. Syarat bakteriologisTidak mengandung bakteri maupun organik lain yang dapat menyebabkan penyakit :Tipus, Kolera, Disentri, Cacingan dan sebagainya.

Rincian dari syarat-syarat tersebut dimuat dalam : Peraturan Menteri Kesehatan R.I 01/BIRHUKMAS/1/1975 sebagai berikut :

Tabel 1.1. Standar kualitas air minum Indonesia

No. Unsur SatuanMin yang diperoleh

Maksyang

dianjurkan

Maks yang diperbolehkan

I. Fisika1.2.3.4.5.

TemperaturWarnaBauRasaKekeruhan

°CPt – C

--

Silika

-----

-5--5

=udara50

Tidak bauNetral

25II. Kimia

1.2.3.4.5.6.7.8.9.

10.11.12.13.14.15.16.17.

18.

19.

20.21.22.23.24.25.

26.27.28.29.

Nitrogen sbg. amoniakNitrogen sbg. NO2

Nitrogen sbg. NO3

Ion Klorida Zat organik sbg KmnO4

Ion SianidaAir raksaFosfor OrganikTembagaBesiManganSengTimah hitamKromioum valensi 6ArsenikFlorida Zat padat sisa penguapanPhenolik Anionik aktif sbg CaCO3

KadmiumSeleniumMagnesiumIon belerang sbg SO4

Sulfida sbg H2SKarbon agresif sbg CO2

Kalsium sbg CaOksigen larutBeriliumMolibdenumPoli-akrinolamidaStrontiumAlumunium (sisa)Asam heksa metafosforik

mg/lmg/lmg/lmg/lmg/lmg/lmg/lmg/lmg/lmg/lmg/lmg/lmg/lmg/lmg/lmg/lmg/l

mg/l

mg/l

mg/lmg/lmg/lmg/lmg/lmg/l

mg/lmg/lmg/lmg/l

---------------1-

-

-

------

----

---

200----

0,050,1

0,051----

500

0,001

-

--

30200

--

75---

0020

60010

0,050,001

-1,51

0,5151,00,050,05

21500

0,002

-

0,010,0115040000

200---

Page 10: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 3

30.31.32.33.

34.35.36.37.38.39.40.

Asam tri PolifosforikMinyak mineralPerakBaliumDerajad keasamanKesadahanKromatisitas

mg/lmg/lmg/lmg/l

mg/lmg/lmg/lmg/lPh

derajatderajat

----

----

6,55D-

----

-------

----

----

9,210D

-III. Radioaktif

1.2.3.4.5.6.

Sinar alfaSinar betaUranium alami & U-238Radium 226Strontium 90Tritium

Uc/mlUc/ml

------

------

0,000000010,0000001

----

IV. Mikrobiologi1.2.3.4.

Kuman parasitikKuman patogenikBakteri koliBakteri, umum

/100ml/100ml/100ml/100ml

----

----

000-

1.3. Problem pada kualitas air Di perkotan Indonesia, Syarat laboratorium tertinggi dipenuhi oleh PDAM, tetapi

oleh karena pipa-pipa distribusi pada umumnya sudah tua, maka sering terjadi kontaminasi pada saat pendistribusian.

Pangadaan air privat, meskipun secara fisik mungkin terlihat baik (tak berwarna,tak berbau dan tak berasa), seringkali masih mengandung berbagai zat organik dan kimia dengan kadar berbeda sesuai dengan lokasinya.dengan demikian test laboratorium diperlukan sebagai dasar treatment terhadap air tersebut, misalnya dengan sedimentasi, proses kimiawi, filtrasi, aerasi atau kombinasinya.

Beberapa problema yang biasa dijumpai dan cara mengatasinya adalah sebagai berikut :

Problema Penyebab Efek buruk KoreksiKesadahan tinggi Garam-garam

kalsium dan magnesium dari air tanah

Membuat pipa berkerak, merusak boiler dan juga merusak cucian dan makanan

Penukaran ion (diproses dengan zeolit)

Korosi Derajat keasaman tinggi akibat naiknya oksigen dan CO2 (Ph

Perkaratan pipa,lerusakan terutama pada berbahan kuningan

Peningkatan kadar alkalin

Page 11: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 4

rendah)Polusi Kontaminasi

organik atau oleh air limbah

Timbulnya penyakit

Klorinasi dengan sodium Hipoklorit atau gas klorin

Warna Zat besi dan mangaan

Merubah warna pakaian atau peralatan

Dihujani melalaui filter oksidasi (manganese zeolit)

Rasa dan bau Zat organik Tidak enak (diminum)

Filtrasi denaga karbon aktif (Proses penjernihan)

Kekeruhan Lumpur atau koloid yang terbawa air permukaan

Tidak enak dilihat Filtrasi dengan pasir diatomea

Gambar 1.1 Contoh-contoh filter

Keterangan gambar :

Page 12: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 5

a. Filter untuk air sadah dengan sistem penukaran ion (zeolit); zat penyebab kesadahan diendapkan. Zeolitnya dapat dicuci dengan sistem back-wash secara berkala.

b. Zat besi dan sulfida dihilangkan dengan manganese zeolite setelah air dihujankan terlebih dahulu. Asam dinetralisir dengan alkali;bau dan rasa dihilangkan dengan karbon aktif.

c. Air yang terpolusi bakteri/kuman dimurnikan dengan gas klorin,atau pada instalasi yang lebih kecil dengan hipoklorinator yang berbentuk serbuk atau tablet (kaporit).

1.4 Pompa – pompa penyedia air bersih

1.4.1 Pompa sumur dangkal

Gambar 1. 2 Pompa untuk sumur dangkal

Pompa ini sangat populer sebagai pompa domestik dan lebih dikenal dengan namatrade – marknya (Sanyo,Hitachi, Shimitzu, Dab dsb).Secara teoritis pompa ini dapt mengangkat air sampai 10 m ; tetapi secara praktis terbatas sampai tinggi 7,5 m.

Page 13: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 6

1.4.2. Pompa jetPompa ini biasa digunakan untuk sumur dalam (semi deep-well) yang muka airnya lebih dari 10 m dibawah muka tanah . Merupakan suatu sistem yang terdiri dari sebuah pompa centrifugal yang dilengkapi dengan jet – ejector (venturi system).Pompa yang diletakkan dimuka tanah memompa air dengan tekanan besar (tetapi laju aliran kecil) melalui pipa ke nosel. Nosel tersebut dipasang dibawah muka air sumur pada pipa yang lebih besar dan menghadap keatas (lihat gambar 1.3).Akibat pancaran air ke nosel ,maka air sumur dibawah nosel akan ikut tersedot dan terdorong keatas.Salah satu kelebihan dari pompa ini adalah : tidak adanya komponen pompa yang bergerak dibagian dalam sumur.

Gambar 1.3 Pompa jet (jet-pump)

1.4.3. Pompa submersiblePompa jenis ini terutama ditujukan untuk sumur sangat dalam. Motor listriknya terpasang langsung pada rumah pompa ; menjadi konstruksi yang terpadu ; dan sesuai dengan namanya ; pompa ’ditenggelamkan’ dibawah muka air sumur dalam pipa besi 10 cm. Penyambung keatas hanya dengan pipa keluar (sekaligus penggantung pompa) dan kabel pengantar listrik.

Kelebihan dan karakteristik pompa submersible ini adalah :

Page 14: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 7

a. Tidak memerlukan bangunan pelindung pompa.b. Tidak berisik, mudah dipasang dan relatif murah.c. Konstruksinya sederhana, tidak ada poros penyambung dan bantalan perantara.d. Pompa dapat bekerja dengan kecepatan putaran tinggi.

Gambar 1.4 Konstruksi pompa submersible

1.1.4. Pompa sentrifugal

Gambar 1.5 Pompa sentrifugal

Page 15: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 8

Gambar 1.6 Konstruksi pompa sentrifugal

Oleh sebab mempunyai daya dorong yang besar, pompa sentrifugal ini biasanya digunakan untuk memindahkan air dari tangki bawah ke tangki atas yang terletak jauh diatasnya (lebih dari 10 m).

Komponen utama pompa adalah impeler dan rumah pompa yang berbentuk `keong’.Bila impelernya hanya satu maka disebut pompa single-stage; beberapa impeller dipasang pada satu poros. Air dialirkan dari impeler pertama ke impeler kedua dan seterusnya(dapat mencapai 10 buah) secara berurutan. Dengan cara ini didapat pompa yang sangat kuat; berguna untuk pompa sirkulasi pendorong dari tangki bawah ke tangki atas/atap pada bangunan yang sangat tinggi. Atau digunakan pada tangki tekan serta instalasi mesin AC.

2. Perancangan Sistem air Bersih2.1.Sistem penyediaan air

Dalam merancang penyediaan air untuk suatu fungsi bangunan apapun, ada dua hal pokok yang harus dikerjakan di awal sekali,yaitu :

a. Menghitung kebutuhan air yang diperlukan.b. Mencari / survai sumber air (PDAM, sumur dsb) beserta kapasitasnya untuk

pemenuhan kebutuhan tersebut.

Nomor Nama

001 Rumah pompa

012 Tutup bagian masuk

021 Impeler

031 Poros

039-1 Pasak

039-2 Pasak

048 Mur pengikat impeler

051 Rumah bantalan

053 Tutup bantalan

056 Bantalan peluru

091 Penahan sekat

093 Cincin pembuang air

107 Cincin penutup impeller

115 Cincin O

119 Sekat

135 Cincin mur

140 Kopeling

213 Klep pelepas udara

Page 16: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 9

Makin besar kebutuhannya maka makin besar pula suplai yang diperlukan. Misalnya untuk suatu rumah tinggal di kota, biasanya sumber utama yang dapat digunakan adalah air dari pipa dinas PDAM dengan laju aliran 30 l / menit. Namun untuk daerah tertentu dimana belum ada jaringan PDAM, maka dicari altenatif lain;misalnya dengan membuat sumur bor (sumber privat), yang kapasitasnya tergantung pada jenis sumur dan kekuatan pompanya (untuk sumur yang menggunakan pompa submersible,laju aliran yang didapat berkisar 80 – 150 l / menit). Dengan demikian,maka tugas awal perancangan adalah menyeimbangkan antara laju aliran kebutuhan dengan laju suplai sumber air yang didapat. Untuk fungsi – fungsi dengan kebutuhan air yang besar, maka selalu timbul kemungkinan penyediaan airnya merupakan kombinasi antara dinas PDAM dengan beberapa buah sumur sekaligus.

Setelah sumber penyediaan didapat maka dirancang sistem penyediaannya yang pada dasarnya dapat di kelompokkan mejadi 3 bagian :

a. Sistem sambungan langsung tangki (dari pipa dinas PDAM).b. Sistem tangki penampungan. c. Sistem tangki tekan.

Sistem yang pertama ; Sistem sambungan langsung tanpa tangki; meskipun lazim digunakan dinegara maju (Eropa, Amerika, Jepang), dilarang digunakan di Indonesia,sebab memungkinkan pemasangan pompa – pompa langsung ke saluran distribusi PDAM.

2.1.1.Sistem sambungan langsung

Gambar 1.7 Sistem sambungan langsung ke pipa dinas PDAM

Pada sistem ini, pipa distribusi dari dalam gedung disambungkan melalui meter air ke pipa dinas PDAM yang terletak didalam tanah diluar pagar rumah. Laju aliran suplai air dibatasi oleh ukuran (diameter) pipa cabang serta tekanan air dari pipa cabang dan

Page 17: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 10

pipa dinas yang disediakan dan ditentukan oleh PDAM Oleh sebab keterbatasan itu,sistem sambungan langsung ini hanya diterapkan pada rumah atau gedung kecil tak bertingkat.

2.1.2.Sistem tangki atap

Gambar 1.8 Sistem tangki atap yang dilengkapi tangki bawah

Oleh sebab sistem sambungan langsung seringkali tidak memuaskan dan tidak dapat mengakomodasi bangunan bertingkat, maka sebagai gantinya digunakan sistem tangki atap atau menara air. Pada prinsipnya air dari sumber PDAM maupun sumur privat,harus ditampung terlebih dahulu di tangki penampungan bawah, kemudian di pompakan ke tangki atas yang dapat diletakkan diatap atau menara air, baru didistribuskan keseluruh bangunan.Konsekunsi dari sistem ini adalah :

a. Volume tangki atap tergantung pada kebutuhan bangunan, pada jam pemakaian puncak dan laju aliran dalam pipa penghubung antara tangki atap (tidak harus satu pipa / pompa).

b. Volume tangki bawah tergantung pada besarnya laju aliran kebutuhan sehari yang diambil oleh tangki atap plus distribusi dan juga oleh besarnya laju aliran suplai air dari pipa PDAM ; sumur privat atau kombinasi.

Page 18: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 11

Keunggulan dari sistem tangki atap ini adalah :a. Tekanan air dalam pipa distribusi dalam bangunan serta pada alat

plambing hampir tidak berubah, hanya dipengaruhi oleh perubahan tinggi muka air dalam tangki.

b. Pompa menaikkan air dari tangki bawah keatas dengan cara sederhana dan otomatis sehingga kecil kemungkinan timbulnya kesulitan. Pompa dijalankan atau dimatikan oleh alat pendeteksi muka air (water level control) dalam tangki bawah dan tangki atas. Bila tangki bawah kosong atau tangki atas penuh maka pompa akan mati. Sebaliknya bila tangki atas kosong tetapi tangki bawah berisi maka pompa dijalankan.

c. Perawatan tangki atap lebih sederhana dibanding dengan tangki tekan.

2.1.3. Sistem tangki tekan

Gambar 1.9 Sistem tangki tekan dengan tangki penampungan

Pada dasarnya sistem tangki tekan ini dibuat karena tidak dimungkinkan atau tidak dikehendaki adanya tangki atap/menara air. Dengan demikian, untuk menaikkan air dari tangki penampung bawah langsung keperalatan plambing diatasnya digunakan tekanan buatan (melalui tangki tekan dan kompresor) yang jelas lebih mahal dari tangki atap yang menggunakan sistem gravitasi alamiah. Sistem kerja tangki tekan adalah sebagai berikut : Air yang telah ditampung ditangki bawah dipompakan kedalam suatu tangki tertutup yang tahan tekanan, selain itu udara didalam tangki juga dikompresi dengan alat kompresor untuk mengatur besarnya tekanan yang diinginkan. Air dalam tangki tersebut kemudian didistribusikan (up-feed) dalam bangunan. Pada saat air digunakan oleh alat plumbing maka tekanan dalam pipa maupun tangki tekan akan turun. Bila pemakaian air berlanjut maka tekanan akan

Page 19: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 12

turun sampai suatu batas yang telah ditentukan dan akan menjalankan pompa secara otomatis (diatur oleh detektor tekanan yang membuka/menutup saklar motor listrik pompa). Pompa akan berhenti otomatis bila tekanan mencapai batas maksimum yang telah ditetapkan; bekerja kembali bila telah mencapai batas minimum yang telah ditetapkan pula. Daerah fluktuasi tekanan ini berkisar antara 1,0 sampai 1,5 kg/cm .Selisih tekanan yang lebih besar akan memberi waktu berhenti pompa yang lebih lama, tetapi seringkali memberi efek negatif pada alat plambing (misalnya pada alatpemanas air dengan gas, dihasilkan temperatur air yang berubah – ubah ).Perbandingan volume udara dengan air dalam tangki tekan adalah 30% berbanding 70% dan pada fluktuasi tekanan antara 1 – 1,5 kg/cm , volume air yang dipindahkan hanyalah 10% dari volume tangki, menyebabkan pompa akan sering bekerja dan saklar akan aus lebih cepat. Oleh sebab itu pula, tangki tekan ini selalu berukuran besar dan membutuhkan ruang besar. Sistem tangki tekan tanpa tangki penampung bawah dan pompa berfungsi ganda (mengambil dari sumur dan mengalirkan ke tangki tekan) dapat digunakan pada sumur privat (air tanah) seperti contoh berikut:

Gambar 1.10 Sistem tangki tekan dengan sumber air sumur

2.2 Pemasangan Tangki Air

2.2.1 Syarat – syarat tangki air bersihPemasangan, dan kontruksi tangki air bersih harus memperhatikan beberapa syarat sebagai berikut:

a. Tangki tidak boleh langsung di tanam ke tanah.b. Badan tangki tidak diperbolehkan menyatu dengan struktur bangunan.c. Terdapat ruang bebas sekeliling tangki untuk pemeriksaan dan perawatan,

demikian pula atas dan bawahnya.

Page 20: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 13

d. Tidak diperkenankan memasang peralatan pompa, boiler (pemanas air), mesin refrigerasi atau mesin lainnya di tutup tangki.

e. Tangki harus mempunyai manhole untuk perawatan dari dalam, lubang minimum berdiameter 45 cm; dianjurkan 60 cm.

f. Pipa pengambil atau penghisap dari pompa dilengkapi katup dan lubang penghisap yang terletak minimum 20 cm diatas dasar tangki agar endapan kotoran tidak ikut terhisap.

g. Dasar tangki dibuat bertekuk dan miring 1% kearah lubang pengurasan.

Gambar 1. 11 Contoh letak pipa hisap dan lekukan didasar tangki

h. tangki sebaiknya dapat dibersihkan tanpa memutuskan penyediaan air kedalam pipa distribusi. Masalah ini biasanya dipecahkan dengan menggunakan tangki ganda, untuk tangki bawah maupun atas. Dengan demikian bila tangki yang satu sedang dibersihkan maka digunakan tangki kedua untuk mendistribusi ke pemakai.

Syarat tata letak dan hubungan antara kedua tangki tersebut adalah sebagai berikut:

Page 21: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 14

Gambar 1.12 tangki ganda; distribusi tak terputus saat pembersihan.

i. Setiap tangki harus dilengkapi dengan pipa peluap (overflow) yang tidak boleh disambungkan langsung ke pipa pembuangan, mempunyai celah udara ≥ 2 kali diameter pipa.

j. Pada setiap tangki perlu dipasang pipa ven / ventilasi yang diberi saringan anti serangga. Tujuannya adalah memasukkan atau mengeluarkan udara ketika volume air dalam tangki berkurang, atau bertambah.

Dua tangki tekan penampung air PAM. Jarak “a” minimum 45 cm, dari bagian peling luar tangki

Dua tangki atap. Sirkit elektroda tangki yang sedang dibersihkan harus dapat diputuskan

Page 22: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 15

Gambar 1.13 tangki dengan pipa ven dan celah udara

2.2.2 Pemasangan tangki diluar bangunan

Apabila tangki air akan dipasang diluar bangunan, baik tangki atas dengan menara atau tangki bawah, perlu diperhatikan syarat jarak (a) terhadap gedung, pagar batas persil, tangki septic, saluran – saluran pembuangan lainnya; yaitu a > 5 m. syarat ini dimaksudkan agar tangki yang tertanam di bawah atau semua saluran air bersih terhindar dari pencemaran

Gambar 1.14 Syarat letak tangki diluar bangunan

Page 23: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 16

Gambar 1.15 Contoh menara air yang salah jarak

Gambar 1.16 tangki bawah diluar bangunan

Pada contoh gambar 1.16 diatas bahwa untuk tangki bawah tidak ditanam langsung kedalam tanah, dibuatkan ruang khusus dibawah tanah. Dengan demikian syarat pertama (a) dari tangki air bersih dipenuhi. Selainitu perhatikan bahwa syarat jarak (a ≥ 5 m) dipenuhi dengan ukuran terhadap dinding ruang untuk tangki, bukan dari dinding tangkinya sendiri

2.2.3 Pemasangan tangki di dalam bangunan

Pemasangan tangki dibawah maupun atas dalam bangunan, tanpa kecuali harus mengikuti persyaratan tangki air bersih yang telah dibahas sebelumnya. Dengan demikian persyaratan pemasangan tangki dalam suatu ruang dalam bangunan dapat digambarkan sebagai berikut:

Page 24: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 17

Gambar 1.17 contoh penempatan tangki dalam ruang bangunan

Gambar 1.18 Contoh pembuatan tangki yang salah;Tangki menyatu dengan struktur bangunan.

Page 25: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 18

Seringkali tangki penampungan bawah pada gedung – gedung besar diletakkan dalam ruang di basement. Namun, seringkali pula kekurang cermatan desain terjadi pada kasus perletakan tangki di basement ini. Karena itu pada halaman berikut ini disertakan contoh – contoh perletakan yang salah dan yang benar dari kasus tersebut.

Gambar 1.19 Contoh tangki dalam gedung yang benar

Page 26: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 19

2.2.4 Konstruksi Tangki Air

Konstruksi tangki air sangat tergantung pada bahan yang digunakan serta kemudahan pemasangannya, terutama bila dipasangkan di dalam ruang tertutup. Bahan yang digunakan secara umum adalah : baja ; beton bertulang dengan cat khusus yang tak beracun ; baja stainless stell dan FRP (fiber reinforced plastic) yang lebih populer dengan sebutan fiber glass. Sedangkan untuk kemudahan dimasukkan kedalam ruang, maka digunakan sistem panel yang kemudian di rakit didalam ruang.

a. Tangki pelat baja Tangki jenis ini banyak dibuat karena sederhana, bentuknya dapat disesuaikan

dengan kondisi tempat maupun estetika. Secara struktural, penguatan konstruksi tidak sulit dilakukan, yang menjadi masalah pokok adalah terjadinya korosi. Penyelesaian dengan pelapisan cat, sampai sekarang ini masih dianggap tidak memuaskan karena cat yang beredar dipasar masih banyak mengandung unsur timbal yang beracun.

Gambar 1. 20 Kontruksi tangki air dengan plat baja ( ± 6 m3 )b. Tangki baja tahan karat (stainless stell).

Baja tahan karat, jelas lebih baik dari pelat baja biasa yang dicat. Disamping itu permukaannya yang licin memudahkan untuk pembersihan, tetapi tidak berarti tangki jenis ini tidak memerlukan perawatan. Perawatan diperlukan terutama

Page 27: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 20

ditujukan pada bagian sambungan las yang kadang-kadang kurang sempurna pengerjaannya sehingga tetap terjadi korosi/perkaratan. Selain itu kadar klorin atau oksigen yang tinggi dalam air ternyata lebih mudah membentuk lapisan kerak pada permukaan stainless steel dibanding bahan lainnya.

Gambar 1. 21 Konstruksi tangki stainless steel dengan struktur panel

c. Tangki FRP (fiber reinforced plastic)Tangki FRP dengan struktur pelat tunggal sangat populer dipakai di perumahan, sebab mudah didapat dalam bentuk jadi dalam berbagai volume, murah, ringan, mudah di warnai, tahan karat dan kimia serta kurang merambatkan panas. Tetapi tangki ini tetap mempunyai kelemahan, yaitu : rentan terhadap tumbuhan, sifat bahannya yang tidak tahan sinar ultra violet sehingga terjadi pelapukan (fatique), permukaannya yang tidak terlalu halus memudahkan terjadinya algae / lumut dan kurang tahan terhadap alkali. Oleh sebab itu sebaiknya tangki jenis ini perlu dilindungi agar tidak terkena sinar matahari langsung. Disamping struktur pelat tunggal yang pada umumnya dibuat dengan volume kecil, untuk mendapatkan tangki ukuran besar sampai 100m3, dapat dipesan tangki FRP berstruktur panel.

Page 28: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 21

Gambar 1.22 Konstruksi tangki FRP pelat tunggal (+10m3)

Disamping masalah konstruksi dari tangkinya sendiri, masalah lain yang timbul adalah masalah dalam kaitannya dengan struktur bangunan dan estetika tampak bangunan. Untuk fungsi bangunan yang membutuhkan banyak air (apartemen, rumah sakit dsb) maka diperlukan tangki atap yang besar pula, dan karena lokasinya di atap, maka memberi beban yang berat terhadap struktur bangunan , selain membebani secara vertikal, struktur bangunan juga akan rentan terhadap gaya lateral. Dari segi estetika, ukuran yang besar dari tangki atap bila lokasi dan bentuknya tidak dirancang dengan baik akan memberi dampak negatif pada tampak bangunan. Oleh sebab itu tata letak serta bentuk dari tangki atap atau menara air sebaiknya telah dipertimbangkan sejak awal desain.

Page 29: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 22

Gambar 1. 23 Tangki FRP dengan struktur panel ( ± 50 m3 )

2.2.5 Hubungan tangki bawah dengan tangki atas

Dalam desain tangki bawah sebaiknya terletak tepat dibawah tangki atas untuk menjamin terjadinya pipa terpendek dan hambatan aliran yang terkecil. Tetapi kadang-kadang karena disebabkan masalah desain yang lain (misal karena organisasi ruang) kondisi ideal tersebut tidak tercapai, sehingga terjadi belokan-belokan pipa sejak keluar dari pompa. Kondisi pompa yang sering mati-hidup bergantian akan menyebabkan terjadinya ‘fluktuasi gelombang tekanan’ yang merambat dalam pipa dengan kecepatan tertentu dan kemudian dipantulkan kembali ketempat semula. Peristiwa ini disebut ‘pukulan air’ yang dapat menggetarkan dan memecahkan pipa-pipa. Makin tinggi jarak angkat air, maka makin besar pula pukulan air yang terjadi. Penanganan ‘pukulan air’ yang paling murah dan sederhana, adalah dengan menggunakan pipa rongga udara pada belokan pipa dan desain sistim yang menghindari pipa (keluar pompa) mendatar panjang disebelah atas bangunan, lebih baik disebelah bawah. Lihat gambar berikut :

Page 30: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 23

Gambar 1.24. Pipa keluar pompa mendatar lebih baik diletakkan serendah mungkin untuk mengurangi ‘pukulan air’

Gambar 1. 25. Konstruksi pipa keluar pompa yang dilengkapi peredam getaran dan rongga udara untuk menmgatasi “pukulan air”

Page 31: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 24

2.3 Sistim DistribusiHanya ada dua kelompok sistim distribusi, yaitu sistim pipa ganda yang terdiri dari sistim pengaliran keatas (up-feed) dan pengaliran kebawah (down-feed). Kelompok lainnya disebut sistim pipa tunggal.

Pada sistim pengaliran keatas, pipa utama distribusi dipasang pada tangki atas kebawah sampai ke langit-langit lantai terendah gedung, kemudian pipa mendatar dan bercabang tegak keatas untuk melayani alat plambing diatasnya. Oleh sebab setiap lantai/alat plambing disuplai oleh aliran air dari bawah keatas, maka disebut sistim up-feed

Pada sistim aliran kebawah, pipa utama dari tangki atas dipasang mendatar di langit-langit tertinggi gedung kemudian dibuat percabangan turun kebawah untuk melayani lantai dan alat plambing dibawahnya. Setiap lantai/alat plambing akan mendapat suplai aliran dari atas kebawah, karena itu disebut sistim down-feed.

Dari kedua sistim aliran kebawah dan keatas, perbedaanya hanya terletak pada aliran suplai ke alat plambing saja, karena itu sukar dikatakan sistim mana yang lebih baik diantara keduanya. Kedua sistim tersebut disebut sebagai kelompok sistim pipa ganda karena memisahkan antara pipa naik dari tangki bawah keatas dengan pipa distribusi

Gambar 1. 27 Sistem Down feed

Gambar 1. 27 Sistem Up feed

Page 32: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 25

utama (dari tangki atas ke lantai dan alat plambing dibawahnya). Apabila kedua pipa tersebut disatukan maka disebut sebagai kelompok sistim pipa tunggal. Lihat gambar berikut :

Dalam pipa ganda (upfeed-downfeed), tekanan air dalam pipa distribusi atau alat plambing tidak banyak berubah, hanya dipengaruhi perbedaan tinggi muka air dalam tangki atas. Lain halnya dengan sistim pipa tunggal, tekanan air akan bertambah ketika pompa sedang mengisi air. Kelemahan dari sistim ini terletak pada pompanya yang mengalami tekanan gravitasi terus-menerus dan harus mempunyai kemampuan besar untuk mengatasi tekanan gravitasi tersebut saat pengisian. Oleh sebab itu, sistim Ini kurang populer pemakaiannya.

Namun, sistim apapun yang dipilih, perlu diperhatikan beberapa hal : a. Pemipaan dirancang sedemikian rupa sehingga udara atau air dapat dikeluarkan

dengan mudah dari pipa.b. Pipa mendatar pada sistim up-feed dibuat agak miring keatas dan pada sistim

down-feed dibuat agak miring kebawah dengan kemiringan 1: 300 (setiap 3 m turun atau naik 1 cm).

c. Hindarkan pipa datar yang membentuk lengkungan keatas, karena akan terjadi akumulasi udara yang dapat menghambat aliran. Atau pada lengkungan tersebut dipasang katup pelepas udara.

d. Dihindarkan pembalikan arah aliran (back-flow).

2.4 Pengamanan sistim

Pengamanan sistim meliputi : pencegahan pencemaran karena tercampur air minum dengan air kualitas lain; terjadinya aliran balik (back flow); rusaknya pipa dan peralatan plambing karena pukulan air atau tekanan air yang berlebihan.

Gambar 1.28. Sistem pipa tunggal

Page 33: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 26

2.4.1 Pencegahan pencemaranPencegahan dilakukan dengan memperhatikan :1. Larangan hubungan pintas

Yang dimaksud adalah : tidak diperkenankan adanya hubungan fisik antara dua sistim pipa yang kualitas airnya berbeda. Misalnya : antara sistim air minum dengan sistim air kebakaran.

2. Mencegah terjadinya aliran balikYang dimaksud adalah : terjadinya aliran masuk air bekas, air tercemar dari peralatan saniter atau tangki kedalam sistim pipa air akibat terjadinya tekanan negatif (back sliphonage effect).

Contoh peristiwa terjadinya aliran balik atau efek sifon balik adalah sebagai berikut (lihat gambar) :Misal, katup A sedang ditutup guna pembersihan tangki atap, dan saat itu ujung slang air yang dikaitkan dengan keran B sedang terendam dalam ember air bekas cucian. Apabila keran C dibuka, tekanan negatif akan timbul dalam sistim pipa karena katup A tetap tertutup. Tekanan negatif dalam pipa ini menyebabkan air bekas dalam ember terhisap masuk melalui keran B dan keluar di keran C.

Untuk mengatasinya, ada dua cara untuk pencegahan terjadinya aliran balik. Pertama, dengan membuat ‘celah udara’ dan yang kedua dengan memasang ‘alat’ pencegah aliran balik.

Celah udara :Merupakan penyediaan ruang bebas antara bagian terendah atau keran tempat air keluar dengan muka air peluapan dari suatu peralatan plambing. Secara umum, celah minimum yang harus disediakan adalah dua kali diameter lubang pipa / keran tempat air dikeluarkan. Untuk wastafel minimum 1”, sink dapur 1 ½ “, dan bathub 2” (inch).

Gambar 1. 29 Aliran balik

Page 34: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 27

Gambar 1. 30 Ukuran celah udara pada tangki

Alat pencegah aliran balik:Oleh karena alasan penggunaan, konstruksi dan terkadang estetika, beberapa peralatan plambing tidak dapat diberi celah udara. Maka dipasangkan alat pencegah aliran balik yang biasa disebut ‘pemecah vakum’. Alat ini bekerja mencegah efek sifon balik secara otomatis, memasukkan udara kedalam pipa pada saat terjadi tekanan negatif dalam pipa.

Pemecah vakum digolongkan menjadi dua jenis, yaitu ‘pemecah vakum atmosferik’ dan ‘pemecah vakum tekanan positif’.Dari kedua jenis pemecah vakum tersebut, pemecah vakum atmosferik ternyata lebih banyak digunakan, merupakan alat yang tak terpisahkan pada penjualan alat saniter (shower, keran bathub, bidet, urinal) dari pabrik merek tertentu (Toto, American Standart,dst).

Beberapa contoh dari pemecah vakum :

Gambar 1.31 Pemecah vakum atmosferik pada katup gelontor(flush valve)

Page 35: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 28

Gambar 1.32 Pemecah vakum atmosverik pada shower

Gambar 1.33 Pemecah vakum bertekanan positip

Contoh peralatan saniter yang dipasang pemecah vakum :

a dan g pada tangki penampungan airb dan c pada kloset dengan katup gelontor (flush –valve)d,e dan h pada keran berpenyambung selangf pada bak cuci /wastafeli pada keran di luar bangunan (siram rumput, cuci mobil)

Page 36: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 29

Gambar 1. 34 Syarat dan pemasangan pemecah vakum

2.4.2 Pencegahan pukulan air ( Water-hammer)

Pukulan air, terjadi tidak hanya pada pipa penyambung antara tangki penampung bawah dan atas saja ( lihat sub bab 2.2.5 ), tetapi terjadi pada semua pipa distribusi. Pukulan air ini terjadi karena adanya ‘ Gelombang Tekanan ‘ yang merambat dalam pipa dan menjadi penyebab kerusakan pada peralatan plambing, getaran dan patahnya pipa, kebocoran dan suara berisik.

Pukulan air cenderung terjadi pada keadaan :a. Penutup katup atau keran sehingga terjadi penghentian aliran secara tiba –

tiba.b. Adanya aliran air dalam pipa karena dengan kecepatan dan tekanan tinggi.c. Banyak pipa vertikal; aliran air keatas atau kebawah.

(a) Pelepas vakum jenis atsmosferik

(b) Pelepas vakum jenis atsmosferik (c) Pelepas vakum jenis atsmosferik

(d) Pelepas vakum jenis atsmosferik (f) Pelepas vakum jenis bertekanan(e) Pelepas vakum jenis

atsmosferik

(g) Pelepas vakum jenis bertekanan

(h) Pelepas vakum jenis bertekanan

(i) Pelepas vakum jenis bertekanan

misalnya penyiram rumput dan tanaman

Page 37: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 30

d. Banyak belokan / perubahan arah pada aliran air.e. Temperatur air yang tinggi.

Pencegahan pukulan air dilakukan dengan :a. Menghindarkan tekanan kerja atau aliran kesepatan air yang terlalu tinggib. Bila tekanan dan aliran kecepatan standar tidak dapat dicapai (misalnya

pada kasus pipa keluar dari pompa; lihat gambar 1.25), maka dipasang alat – alat peredam.

Alat peredam pukulan air dibagi menjadi dua jenis :a. Peredam tekanan dengan komponen elastis karet atau pegas. Kelebihan

alat ini dibanding ‘ Rongga Udara ‘ adalah tidak diperlukan pengisian udara secara berkala, tetapi kelemahannya pada system mekanis didalamnya (karet, pegas) yang dapat rusak.

b. Peredam dengan ‘ Rongga Udara ‘ berupa pipa ekstensi yang berisi udara; dapat dibuat sendiri dari sisa potongan pipa ( ekonomis ). Namun kelemahannya adalah dalam jangka waktu lama, udara dalam pipa dapat hilang ( terbawa atau larut dalam air ) sehingga perlu diisi kembali secara berkala.

Contoh peredam pukulan air :

Gambar 1. 35 Peredam dengan komponen mekanis

Page 38: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 31

Gambar 1.36 Pemasangan peredam rongga udara; garis putus-putus menunjukkan letak bila dipasang satu saja

Gambar 1.37 Pemasangan rongga udara pada tangki penampungan air

Page 39: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 32

Gambar 1.38 Syarat pemasangan peredam mekanisBila a ≤ 6m cukup dipasang satu buahBila a ≥ 6m harus dipasang dua buah

2.4.3 Tekanan, kecepatan dan laju aliran air

2.4.3.1 Tekanan airTekanan/ kecepatan air yang berlebihan dapat menyebabkan pukulan air; kebocoran pada sambungan pipa, pecahnya pipa, kerusakan pada alat-alat plambing, dan juga rasa sakit bila tekanan pancaran air.Sebaliknya, tekanan atau kecepatan air yang kurang mencukupi akan menimbulkan kesulitan dalam pemakaian air, bahkan menyebabkan tidak berfungsinya alat-alat plambing.Tekanan air yang dibutuhkan oleh tiap-tiap jenis alat plambing berbeda-beda, tetapi secara umum besarnya tekanan standar adalah 1,0 kg/cm².Sedangkan tekanan statik untuk perkantoran bekisar antara 4,0 – 5,0 kg; untuk perumahan atau hotel 2,5 – 3,5 kg/cm2.

Dalam table 1.2 (hal 38 ), dapat dilihat tekanan minimum dari tiap jenis peralatan plambing agar tiap peralatan tersebut dapat berfungsi dengan baik. Konsekuensi adanya tekanan minimum ini adalah terutama pada letak ketinggian muka air dalam tangki atap. Sebagai contoh; dalam tabel 1.2; terlihat bahwa katup gelontor, keran otomatik dan unit water-heater, menuntut tekanan kerja yang tinggi. Bila disediakan tekanan air standar 1,0 kg/cm 2, maka tinggi muka air terendah dalam tangki atap minimum berjarak 10 m1 diatas alat plambing yang tertinggi letaknya. Bahkan jarak tersebut lebih besar lagi bila kerugian gesek dalam pipa diperhitungan. 1 Untuk setiap m perbedaan tinggi muka air setara dengan 0,1 kg/cm2; maka untuk kg/cm2

diperlukan perbedaan tinggi 10 m

Page 40: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 33

Pada bangunan tinggi (apartemen misalnya), bila untuk lantai teratas tekanan air telah memenuhi syarat 1,0 kg/cm2, terdapat konsekuensi lain, yaitu tekanan air dilantai paling bawah seringkali melampaui 4 kg/cm2 (tekanan maksimum katup gelontor). Akibatnya, semua katup gelontor yang terletak dilantai bawah akan rusak.Pada pemecahan yang paling sedeharna adalah membagi tangki atas pada beberapa lantai ketinggian, misalnya meletakkan satu tangki di lantai 6 untuk melayani lantai 4,3,2 dan 1; berikutnya meletakkan tangki kedua dilantai 10 untuk melayani lantai 8,7,6,dan 5 dan demikian seterusnya. Hal ini memberi konsekuensi desain yang nyata yaitu harus menyediakan ruang tangki air yang cukup dan memenuhi persyaratan yangki dilantai 6 dan 10, 14 dan seterusnya.

Tabel 1.2 Tekanan minimum yang dibutuhkan alat plambingJenis Alat Plambing Tekanan yang

dibutuhkan Kg/cm2Tekanan

standar Kg/cm2

Keran wastafel 0,50

1,0

Keran dapur (kitchen sink) 0,50Katup gelontor (flush valve) kloset 0,70Katup gelontor urinal 0,40Keran otomatik (menutup sendiri) 0,80Pancuran mandi (shower) dengan pancuran tajam

0,70

Pancuran mandi biasa 0,35Keran biasa 0,30Unit water heater berbahan baker gas 0,25 – 0,70Mesin cuci pakaian 0,50Mesin cuci piring 0,50

Catatan :1. Tekanan maksimum katup gelontor kloset dan urinal adalah 4 Kg/cm2.

Penggelontoran bertujuan untuk membawa kotoran padat dalam pipa buangan sampai ke tangki septic atau saluran umum. Untuk itu menurut standar dibutuhkan 15 liter air yang dialirkan selama 10 detik pada tekanan normal 10 m kolom air ( 1 Kg/cm2).

2. Keran otomatik, bila tekanan minimumnya tidak tercapai maka tidak akan dapat menutup rapat, air akan mengalir terus.

3. Tekanan minimum untuk water heater, tiap merek dapat berbeda sebaiknya melihat brosurnya masing-masing, tetapi untuk yang bertekanan kurang dari 0,5 kg/cm2, debit/laju alirannya kecil sekali. Water heater instaneous untuk shower kamar mandi pada umumnya bertekanan 0,5 kg/cm2.

4. Khusus untuk fire-hose (kebakaran) dibutuhkan tekanan minimum 2,0 kg/cm2.

Page 41: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 34

Berikut ini diberikan contoh perhitungan kasar untuk menetapkan tinggi tangki penampung atas berdasarkan tekanan minimum alat plambing yang dibuthkan (table 1.2) dan pada tekanan kerja aliran standar (1,0 kg/cm2 = 10 m kolom air atau 1 m kolom air = 0,1 kg/cm2; 1 m kolom air = 1 m tinggi)

Gambar 1.39 Contoh memperhitungkan tinggi tangki

Uraian Kebutuhan tekanan minimum

Kg/cm2 m kolom air

Tinggi shower dari muka tanah - 5,80

Tekanan minimum shower 0,35 3,50

Kerugian tekanan dalam pipa 2 0,15 1,50

Tekanan minimum water-heater 0,70 7,00

Jumlah 17,80

Kesimpulan :Muka air terendah dalam tangki penampungan diukur dari permukaan tanah adalah H = 17,80 m (minimum). Selisih tinggi antara muka air tangki terendah dengan shower= 17,80 – 5,80 = 12,0. Selisih tinggi ini menunjukkan gejala umum bahwa tidak mungkin meletakkan tangki atap langsung diatas atap lantai teratas bangunan bila pada lantai teratas tersebut digunakan alat-alat plambing. (perhatikan contoh berikut)

2 Dalam contoh ini hanya diperkirakan hanya sekedar memberi gambaran saja; seharusnya

dihitung berdasarkan panjang pipa, jenis pipa, diameter pipa dan jumlah fitting yang dipasangkan pada pipa itu.

Page 42: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 35

Pada contoh disamping, berdasarkan table 1.2; shower dengan pancaran yangmembutuhkan tekanan minimum 0,7 kg/cm2 setara dengan tinggi 7,0 m. Bila friksi / kehilangan tekanan diabaikan, maka didapat persamaan 7,0 = 4,0 + x – 2,0Berarti tangki atas minimal terletak 1,0 m diatas atap.

Dua contoh diatas, menunjukkan bahwa tekanan minimum alat plambing akan sangat mempengaruhi tinggi muka air terendah dari tangki atap. Tangki atap akan bertambahtinggi lagi bila diperhitungkan adanya kehilangan tekanan / friksi dalam pipa. Kehilangan tekanan dalam pipa tergantung pada : ukuran (panjang & diameter) pipa, jenis bahan pipa (besi, PVC, tembaga), kecepatan dan laju aliran air dalam pipa serta banyaknya katup dan alat penyambung (fitting) yang ada pada pipa tersebut.

Tabel 1.3 Ekivalensi panjang pipa terhadap kerugian gesek berbagai jenis fitting

Ø fitting Elbow90°

Elbow45°

Tee90°

Coupling Gatevalve

Globevalve

Anglevalve

(inch) (mm) (m) (m) (m) (m) (m) (m) (m)3/8 10 0,30 0,18 0,45 0,09 0,06 2,40 1,20½ 13 0,60 0,36 0,90 0,18 0,12 4,50 2,40¾ 20 0,75 0,45 1,20 0,24 0,15 6,00 3,601 25 0,90 0,54 1,50 0,27 0,18 7,50 4,50

1¼ 30 1,20 0,72 1,80 0,36 0,24 10,50 5,401½ 40 1,50 0,60 2,10 0,45 0,30 13,50 6,602 50 2,10 1,20 3,00 0,60 0,39 16,50 8,40

2½ 65 2,40 1,50 3,60 0,75 0,48 19,50 10,203 75 3,00 1,80 4,50 0,90 0,60 24,00 12,00

3½ 90 3,60 2,10 5,40 1,08 0,72 30,00 15,004 100 4,20 2,40 6,30 1,20 0,81 37,50 16,505 125 5,10 3,00 7,50 1,50 0,99 42,00 21,006 150 6,00 3,60 9,00 1,80 1,20 49,50 24,00

Globe valveGate valve

Page 43: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 36

Diagram 1.1 Kerugian gesek dalam pipa baja karbon

Page 44: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 37

Diagram 1.2 Kerugian gesek dalam pipa PVC

Page 45: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 38

Diagram 1.3 Kerugian gesek dalam pipa Tembaga

Page 46: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 39

2.4.3.2. Kecepatan aliran air

Kecepatan aliran air yang terlalu tinggi dapat menjadi penyebab pukulan air,suara berisik bahkan kadang-kadang menyebabkan ausnya permukaan pipa.sebaliknya kecepatan air yang terlalu rendah menyebabkan efek yang kurang baik:terjadi korosi, pengendapan kotoran yang menurunkan kualitas air dan mempercepat timbulnya lapisan kerak yang berarti juga memperkecil diameter pipa.Kecepatan standar aliran air berkisar antara 0,9-1,2 m/detik dan batas

maksimumnya antara 1,5-2,0 m/detik.

2.4.3.3. Laju aliran air (Flow-rate)

Laju aliran pemakaian air oleh suatu masyarakat seiring dengan kemajuan masyarakat itu sendiri,sehingga laju aliran air oleh sekelompok masyarakat dapat dipakai sebagai tolak ukur kemajuan masyarakatnya.Istilah lain dari laju aliran air adalah debit air,mencerminkan kemampuan suplai dari suatu sumber atau kebutuhan air dari suatu fungsi bangunan. Dengan demikian dalam perancangan sistem penyediaan air untuk suatu fungsi bangunan, kapasitas peralatan dan ukuran pipa-pipa yang dibutuhkan didasarkan pada laju aliran air.

Jumlah laju aliran atau kebutuhan suatu fungsi bangunan dapat dihitungberdasarkan:A..Jumlah pemakai dengan memakai standar yang tercantum dalam :

Tabel 1.4; “Pemakaian air rata rata perorang perhari” danTabel 1.5; “Fasilitas minimal peralatan plambing”.

B. Unit beban alat plambimgdengan memakai:Tabel 1.8; “Unit beban alat plambing” dan kurva aliran serentak yang disebut juga sebagai “kurva hubungan antara jumlah unit beban alat plambing dengan laju aliran air.

Tabel 1.4 Pemakaian air rata-rata per orang per hari

No Jenis GedungPemakaian air rata-

rata sehari(liter)

Waktu pemakaian

air rata-rata sehari (jam)

Perbandingan luas

lantai effektif (%)

Keterangan

1 Perumahan mewah 250 8-10 42-45 Setiap penghuni2 Rumah biasa 160-250 8-10 50-53 Setiap penghuni3 Apartemen 200-250 8-10 45-50 Mewah 250 liter

Menengah 180 literBujangan 120 liter

4 Asrama 120 8 Bujangan5 Rumah sakit Mewah>1000

Menengah 500-1000Umum 350-500

8-10 45-48 Setiap t. tidur pasienPasien luar:8 literStaf/pegawai 120 liter

Page 47: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 40

Keluarga pasien:160 liter.

6 Sekolah dasar 40 5 56-60 Guru :100 liter7 SLTP 50 6 58-60 Guru :100 liter8 SLTA & lebih tinggi 80 6 Guru/dosen:100 liter9 Rumah - toko 100-200 8 Penghuni.160 liter10 Perkantoran 100 8 60-70 Setiap pegawai11 Toserba 3 7 55-60 Hanya kakus, belum

restorannya12 Pabrik Industri Buruh pria:60

Wanita:1008 Per orang setiap shift

(kalau kerja lebih 8 jam)

13 Stasiun / terminal 3 15 Setiap penurnpang, tibamaupun berangkat

14 Restoran 30 5 Penghuni 160 liter15 Restoran umum 15 7 Penghuni 160 liter

Pelayan 100 liter 70%.dr jumlah tamu15 liter/orang

16 Gedung pertunjukan 30 5 53 - 55 Setiap orang untuk 1xpertunjukan

17 Bioskop 10 3 Idem18 Toko Pengecer 40 6 Pedagang besar 30 ltr

pertamu, 150 ltr/staf atau 5 ltr /hari setiap m2

luas lantai19 Hotel/Penginapan 250-300 10 Setiap tamu. staf 120-

150 ltr. penginapan 200 ltr

20 Gd. Peribadatan 10 2 Perjemaah per hari21 Perpustakaan 25 6 Setiap pernbaca22 Bar 30 6 Setiap tarnu23 Perkumpulan sosial 30 Setiap tamu24 Kelab malarn 120-350 Setiap tempat duduk25 Gd. Perkurnpulan 150-200 Setiap tamu26 Laboratorium 100-200 8 Setiap stafKhusus untuk butir 1, 2 dan 3 bila. menggunakan bathtub, setiap orang ditambah 100 lt/hari. Jadi ,misalnya untuk perumahan mewah dengan standar 250 lt/hari akan bertambah menjadi 350 lt/hari

Page 48: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 41

Tabel 1.5. Fasilitas minimal peralatan plambingTipe gedung Kloset Urinal Wastafel Bathtub /shower

1 R. tinggal / apartemen 1 per rumah tinggal /apartemen 1 per r.tinggal / apartemen 1 per r. tinggal /aparternen

2

Sekolah :Sekolah dasarSLTP & lebih tinggi

PrIa Wanita1 per 100 1 per 351 per 100 1 per 45

1 per 35 pria1 per 30 pda

1 per 60 orang1 per 100 orang

3 Kantor atau gedung umum

JmIh orang JmIh kloset1-15 116-35 236-55 356-80 481-110 5111-150 6

1 kloset untuk setiap penarnbahan 40.org

Jumlah kIoset yang tersedia dapat dikurangi satu dan digantl dengan urinal selama sisa kloset yang tersedia tidak kurang dari 2/3 jumlah standar minimum

JmIh org JmIh westafel145 116-35 236-60 361-90 491-125 5

1 wastafel untuk setlappenarnbahan 45 orang

4 Pabrik / workshop

JmIh orang JmIh kloset1-9 110-24 225-49 350-74 475-100 5

1 kloset utk sedap penarnbahan 30 karyawan

idern

JmIh org JmIh wastafel1-100 1 per 10 org100 lebih 1 per 15 org

1 shower utk setiap 15 org

5 Asrama

PrIa : 1 untuk setiap 10 orgWanita : 1 utk setlap 8 org

1 kloset untuk setlap penambahan 15 pria atau 20 wanita

1 per 25 pria, bila lebIh dari 150 orangtambahkan 1 per 50 pria

1 per 12 org utk cucl tangan1 per 50 utk sikat gigi1 wastafel utk setiappenambahan 20 pria / 15wanita

1 untuk 8 orgkhusus asrarna wanitaditambah 1 per 30 wanitaBila lebih dari 150 orang,tambah 1 per 20

6 Teater / audItoriurn Jumlah orang JumIah kloset Jumlah pria Jumlah urinal JrnIh org JmIh wastafel PrIa Wanita1-100 1 1 1-200 1 1-200 1101-200 2 2 201-400 2 201400 2201-400 3 3 401-600 3 401-750 3

1 kloset utk setiap penambahan 500 pria 1 urinal untuk setiap penarnbahan 300 pria 1 wastafel utk setiap300 wanita penarnbahan 500 org

Page 49: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 42

Tabel 1.6 Pemakaian air setiap alat plambing

Jenis alat plambing

Penggu naanair untuk

pemakaiansatu kali

(liter)

Penggunaanperjam

Laju aliran(Itr/menit)

Waktupengisian

(detik)

1Kloset dengan katupgelontor

13,5 -16,5 6 -12 110-180 8,2-10

2Kloset dengan tangkigelontor

13 -15 6 -12 15 60

3Urinal dengan katupgelontor

5 12 - 20 30 10

4 Cuci tangan / lavatory 10 6 -12 15 40

5Kitchen sink dengan

25. 6 -12 15 60keran 13 mm

6Kitchen sink dengankeran 20 mm 25 6 -12 25 60

7 Bathtub 125 3 30 2508 Shower 24 - 60 3 12 120 -130

1. Standar pemakaian air untuk kloset dengan katup gelontor, untuk satu. kali penggunaan adalah 15 liter selama 10 detik.

2. Pipa sambungan ke katup gelontor untuk kloset biasanya 25 mm (1"), tetapi untuk mengurangi kerugian akibat gesekan dianjurkan memasang pipa ukuran 32 mm (1 ¼”)

3. Pipa sarnbungan ke katup gelontor untuk urinal biasanya 13 mm (1/2"), tetapi untuk mengurangi kerugian akibat gesekan dianjurkan memasang pipa ukuran 20 mm (3/4")

Tabel 1. 7 Tabel beban unit untuk alat plambing

Jenis alat plambingJenis

Penyediaan airBeban unit alat plambing

Untuk pribadi Untuk umum

Kloset Katup gelontor 6 10Kloset Tangki gelontor 3 5Urinal Katup gelontor - 5Bak cuci kecil keran 0,5 1Wastafel keran 1 2Bak cuci tangan; kamaroperasi

keran 3

Bathtub Keran pencampur 2 4Shower Keran pencampur 2 4Satuan kamar mandi : 1Bathtub + 1 wastafel + 1Shower + 1 kloset

Dengan kloset katupgelontor

8 -

Satuan kamar mandi : 1 Dengan kloset tangki 6 -

Page 50: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 43

Bathtub + 1 wastafel + 1Shower + 1 kloset

gelontor

Bak cuci bersama Untuk setiap keran - 2Bak cuci pel keran 3 4Bak cuci dapur keran 2 4Bak cuci piring keran - 5Bak cuci pakaian keran 3 -Drinking fountain Keran khusus - 2Pemanas air Katup bola - 2

Catatan :

1. Alat plambing untuk keperluan pribadi dimaksudkan untuk rumah tinggal atau apartemen dimana pemakaiannya tidak terlalu banyak.

2. Alat plambing untuk keperluan urnum dimaksudkan untuk gedung kantor, sekolah, pabrik dsb, untuk pemakaian umum.

3. Alat plambing yang tidak ada dalam daftar, digunakan perkiraan dengan membandingkan alat yang hampir serupa.

4. Nilai beban unit untuk pencampur (mixer) air panas dan dingin; sudah diperhitungkan sebagai nilai total; bila, dipisahkan (dingin atau panas saja) diambil nilai ¾ dari daftar.

5. Alat plambing yang airnya mengalir kontinu, dihitung terpisah dan ditambahkan padajumlah alat plambing.

(a) Untuk unit beban sampai 3000

Page 51: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 44

(b) Untuk unit beban sampai 250 ( skala gambar diperbesar)

Diagram 1.4 Hubungan antara unit beban alat plambing dengan laju aliran

Kurva (1) untuk system yang sebagian besar menggunakan katup gelontorKurva (2) untuk system yang sebagian besar menggunakan tangki gelontor

3. Penghitungan kebutuhan air dan Kapasitas alat.

3.1. Penafsiran kebutuhan air.

Penafsiran kebutuhan air sebenarnya merupakan langkah awal dari perhitungan selanjutnya, yang berupa penentuan kapasitas tangki atas dan bawah. Kapasitas pompa dan ukuran pompa.

Sasaran Utama penafsiran kebutuhan ini adalah untuk mendapatkan: a. Pemakaian air atau kebutuhan sehari (Qd - m 3 / hari). b. Pemakaian air rata-rata per jam (Qh - m 3 / jam). c. Pemakaian air pada jam puncak (Qh-max - m3/ jam). d. Pemakaian air pada menit puncak (Qm-max - m 3/ jam).

Dalam penafsiran kebutuhan tersebut, maka digunakan tiga rumus yang menunjukkan hubungan antara keempat variabel tersebut, yaitu:

a. Qh= Qd / T T = jangka waktu pemakaian sehari (jam).b. Qh-max = c1 x Qh

c1= konstanta antara 1,5 - 2,0: tergantung lokasi dan sifat pengunaan gedung (misal untuk apartemen mewah=2,0; rumah susun=1.5).

c. Qm-max = c2 x (Qh /60). c2 = konstanta antara 3,0 - 4,0.

Page 52: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 45

Berikut ini akan diberikan 4 contoh cara penafsiran cara pemakaian air:1. Berdasar jumlah penghuni.2. Berdasar luas dan kepadatan.3. Berdasar beban unit alat plambing.4. Berdasar fasilitas minimal alat plambing.

Dalam melakukan penafsiran perlu dicatat bahwa setiap cara penafsiran akan menghasilkan nilai angka berbeda, meskipun penafsiran itu dilakukan pada obyek yang sama, misal, penafsiran dengan beban unit akan menghasilkan nilai yang lebih besar dibandingkan dengan penafsiran dengan jumlah penghuni.. Karena itu dianjurkan pada obyek yang sama dilakukan penafsiran dua kali dengan dua cara yang berbeda untuk menghasilkan suatu kesimpulan yang lebih akurat.

3.1.1 Penaksiran berdasarkan jumlah penghuni

Metoda dengan cara ini praktis digunakan pada tahap prarancangan arsitektur, karena kebutuhan pemakaian air sudah dapat ditentukan meskipun desain dan jumlah peralatan plambing yang digunakan belum dapat ditentukan.

Penaksiran dengan menggunakan cara ini dilakukan berdasarkan tabel 1.4. (hal. 46); menggunakan ‘standar’ pemakaian air per orang per hari pada fungsi tertentu yang dikaitkan dengan jumlah penghuni bangunan tersebut.

Contoh 1 : Penaksiran berdasarkan jumlah penghuni

Sebuah Gedung apartemen mewah, berisi 50 keluarga. Untuk 30 keluarga disediakan satu kamar tidur dan 20 keluarga dengan dua kamar tidur (tiap kamar tidur berisikan 2 orang) Jumlah penghuni : (30 x 2) + (20 x 4) = 140 keluarga Dari tabel 1.4 (hal. 46 ), pemakaian air untuk apartemen mewah adalah 250

l/org per hari dengan lama waktu pemakaian T = 10 jam per hari. Qd = 250 x 140 = 35.000 l/hari = 35 m3/hari Qh = Qd/T = 35 / 10 = 3,5 m3/jam Pemakaian air pada jam puncak dengan konstanta c1 = 2,0

Qh-max = c1 x Qh = 2 x 3,5 = 7,0 m3/jam Pemakaian air pada menit puncak dengan konstenta c2 = 4,0

Qm-max = c2 x (Qh / 60) = 4 x (3,5 / 60) = 0,23 m3/menit.

Catatan :1. Bila tiap apartemen tersebut menggunakan kamar mandi dengan bathtub

maka standar pemakaian air per orang per hari adalah 350 l/hari.

Page 53: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 46

2. Hasil penaksiran merupakan pemakaian penghuni ( cuci, makan, pel, dsb) ; belum termasuk air yang diperlukan untuk pengelolaan bangunan, siram rumput, membersihkan gedung, kolam, air untuk kebakaran, AC, menyiram tanaman, dan sebagainya yang harus diperhitungkan secara terpisah

3.1.2 Penaksiran Berdasarkan Luas & Kepadatan

Bila jumlah penghuni belum dapat diketahui (sering terjadi bangunan-bangunan umum), maka penaksiran dibuat berdasarkan kepadatan hunian (antara 5 m2 sampai 10 m2 per orang) dan luas efektif/netto bangunan3, yang tercantum pada tabel 1.4 , kolom 5 ; hal 46

Contoh 2 ; Penaksiran berdasar luas & kepadatan bangunan

Direncanakan suatu gedung perkantoran dengan luas 10.000 m2 ; untuk luas kerja rata-rata per orang diambil 5 m2 /orang. Luas efektif gedung berdasar tabel 1.4 adalah 60% - 70% .

Bila diambil 60% maka Lefektif = 0,6 x 10.000 = 6.000 m2. Jumlah pemakai Gedung tersebut = 6.000/5 = 1.200 orang Dari tabel 1.4 ; untuk bangunan perkantoran dibutuhkan pemakaian air 100 liter/

pegawai per hari ; dengan lama pemakaian T = 8 jam ; maka Qd = 1.200 x 100 = 120.000 l/hari = 120 m3/hari

Bila diandaikan diberi tambahan 20% untuk mengatasi kebocoran, penguapan dikarenakan water-heater , penyiraman tanaman, cooling tower mesin AC dan sebagainya4 ; maka kebutuhan air menjadiQd = 1,2 x 120 m3 = 144 m3/hari.

Karena T = 8 jam ; maka Qh = Qd /T = 144/8 = 18 m3/jam Bila ditetapkan c1 = 2 dan c2 = 3 maka :

Qh-max = c1 x Qh = 2 x 18 = 36 m3/jam.Qm-max = c2 x (Qh/60) = 3 x (18/60) = 0,9 m3/menit

3

Presentasi luas efektif dalam tabel ini hanya berlaku untuk penaksiran pemakaian air, tidak berlaku untuk hal yang lainnya (mis. Ekonomi bagunan, studi kelayakan proyek)

4Pengandaian 20% disini hanya untuk mengingatkan bahwa diluar kebutuhan pemakai masih terdapat kebutuhan lain yang harus diperhitungkan secara terpisah.

Untuk penambahan karena pemakaian alat seperti AC dan Cooling Tower , sangat tergantung pada kapasitas mesin AC nya sendiri, namun sebagai gambaran dapat dilihat rasio kebutuhan sebagai berikut :a. Mesin pendingin AC kompresi uap membutuhkan 13 l/menit ; jenis absorsi 16 l/menit untuk

setiap TR (Ton Refrigerasi).b. Cooling Tower sebesar 0,26 – 0,39 l/menit untuk setiap TR, akibat penguapan 1% dan

pengkabutan 2 – 3%.

Page 54: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 47

3.1.3 Penaksiran berdasarkan unit beban alat plambingPenaksiran dengan menggunakan cara seperti ini dilakukan bila jumlah peralatan plambing telah diketahui jumlahnya atau telah dilakukan perhitungan kebutuhan peralatan plambing minimal (tabel 1.5 : “fasilitas minimal peralatan plambing”).

Contoh 3. Penaksiran berdasarkan unit beban

Suatu gedung perkantoran, memiliki lantai tingkat 4 dengan peralatan plambing pada tiap tingkat terdiri dari : 3 kloset duduk (katup gelontor) ; 3 wastafel, 3 urinal dan bak cuci pel 4 buah. Jumlah total alat plambing untuk 4 lantai :

Kloset duduk katup gelontor 12 buah, wastafel 12 buah, urinal 12 buah dan bak cuci pel 4 buah.

Berdasarkan tabel 1.7 (hal. 49), jumlah unit beban total adalah :

Jenis alat plambing Jumlah alat plambing

Unit beban alat plambing

Jumlah unit beban

Kloset (katup gelontor 12 10 120Wastafel 12 2 24Urinal 12 5 60Bak cuci pel 4 4 16

Jumlah unit beban total 220

Dengan menggunakan diagram 1.4 b-kurva 1 (hal. 50 ) ; karena katup gelontor dominan, diperoleh pemakaian serentak yang ekivalen dengan Qh-max = 360 liter/menit = 21,6 m3/jam.

Bila ditetapkan c1 = 2 ; maka Qh = Qh-max /c1 = 10,8 m3/jam. Pemakaian dalam sehari Qd = T x Qh = 8 x 10,8 = 86,4 m3/hari (dari tabel 1.4,

pemakaian rata-rata sehari T = 8 jam) Bila ditetapkan c2 = 4, maka pemakaian pada menit puncak adalah Qm-max

= Qh x c2 = 10,8 x 4 = 43,2 m3/jam atau 0,72 m3/menit.

Hasil penaksiran ini dapat digunakan untuk mencari jumlah pegawai maupun luas lantai banguna yang dilayani oleh alat plambing yang disediakan : Qd = 86,4 m3/hari, pemakaian per karyawan = 100 liter/hari (tabel 1.4) ; maka

jumlah karyawan yang dilayani : 86.400/100 = 864 orang. Luas lantai kerja per karyawan 5 m2 ; Lefektif = 5 x 864 = 4320 m2. Lefektif = 60% (tabel 1.4) maka luas total bangunan tersebut = 7200 m2..

Contoh 4 : Penaksiran berdasarkan fasilitas minimal peralatan plambing

Sebagai contoh diambil sebuah bangunan yang sama pada contoh 3. Kantor dengan pegawai 864 orang dan untuk penafsiran digunakan tabel 1.5 (hal 47)

Page 55: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 48

Perhitungan awal jumlah kloset yang harus disediakan : Sampai 150 orang disediakan 6 kloset.Sisanya (864 – 150) disediakan 1 kloset setiap penambahan 40 orang = 714/40 = 17,85 atau dibulatkan menjadi 18 kloset. Jumlah kloset = 6 + 18 = 24 kloset.

Untuk perhitungan urinal ; jumlah minimum kloset = 2/3 x 24 = 16 kloset ; sisanya diganti urinal = 24 – 16 = 8 urinal.

Wastafel yang perlu disediakan :Sampai 125 orang dibutuhkan 5 wastafel ; sisanya (864 – 125) disediakan 1 wastafel setiap penambahan 45 orang = 739/45 = 16,42 atau dibulatkan menjadi 16 buah wastafel

Berdasar tabel 1.7 (hal. 49 ), jumlah unit beban total adalah :

Jenis alat plambing Jumlah alat plambing

Unit beban alat plambing

Jumlah unit beban

Kloset (katup gelontor) 16 10 160Wastafel 16 2 32Urinal 8 5 40Bak cuci pel - - -

jumlah unit beban total 232

Dengan menggunakan diagram 1.4 b-kurva 1 (hal. 50 ) ; karena katup gelontor dominan ; diperoleh pemakaian serentak yang ekivalen dengan Qh-max = 375 liter/menit = 22,5 m3/jam.

Bila ditetapkan c1 = 2 ; maka Qh = Qh-max /c1 = 11,25 m3/jam. Pemakaian dalam sehari Qd = T x Qh = 8 x 11,25 = 94 m3/hari (dari tabel 1.4,

pemakaian rata-rata sehari T = 8 jam) Bila ditetapkan c2 = 4, maka pemakaian pada menit puncak adalah Qm-max = Qh x c2 = 11,25 x 4 = 45 m3/jam atau 0,75 m3/menit.

Dari kedua penaksiran tersebut, terlihat bahwa hasil dari keduanya tidak berbeda banyak, namun terlihat bahwa desain awal atau perkiraan jumlah alat plambing yang dibutuhkan tidak memenuhi syarat minimal. Berarti, meski kebutuhan air tetap namun perlu dilakukan re-desain pada WC yang ada.

3.2 Penghitungan Kapasitas AlatBila penaksiran kebutuhan air pada suatu gedung telah dilakukan, berarti kebutuhan rata-rata per jam, pemakaian air sehari dan pemakaian air pada jam dan menit puncak telah diketahui. Maka selanjutnya kapasitas tangki atap (VE), kapasitas pompa pengisinya (Qpu), kapasitas tangki bawah (VR) beserta ukuran-ukuran pipa penghubungnya dapat dihitung :

3.2.1 Kapasitas tangki atap / atasTangki atas (VE) dimaksudkan untuk menampung kebutuhan puncak dan disediakan dengan kapasitas cukup selama jangka waktu kebutuhan puncak terjadi. Dalam banyak kasus, jangka waktu yang dianggap cukup adalah selama 30 menit (Tp). pada

Page 56: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 49

keadaan tertentu, mulainya kebutuhan puncak justru pada saat muka air dalam tangki pada posisi terendah (kosong, tetapi belum habis). Maka pada saat bersamaan diperlukan pengisian tangki yang lebih cepat jangka waktunya dibanding jangka waktu pemakaiannya. Karena itu waktu pengisian tangki ditetapkan selama 10 – 15 menit (Tpu) dan lebih banyak ditentukan oleh jumlah dan kapasitas pompa (Qpu) serta ukuran pipa penghubung antara tangki bawah dengan atas. Dengan demikian maka kapasitas efektif tangki atas dapat dirumuskan sebagai berikut :

VE = (Qp – Qmax)Tp + (Qpu x Tpu )

Dimana :VE = kapasitas efektif tangki atas (liter)QP = laju aliran penyediaan pada kebutuhan puncak (liter/menit)Qmax = laju aliran pemakaian pada jam puncak (liter/menit)Qpu = kapasitas pompa pengisi (liter/menit)Tp = jangka waktu pemakaian puncak (menit)Tpu = jangka waktu kerja pompa pengisi(menit)

Agar VE menjadi efektif, maka laju aliran pompa pengisi (Qpu) diusahakan sama besarnya dengan laju aliran pemakaian pada jam puncak Qmax ; maka Qpu = Qmax dan makin dekat nilai laju aliran pompa dengan laju aliran yang harus disediakan pada jam puncak (Qp ), akan makin kecil volume tangki atas.Karena itu, apabila dapat diusahakan Qp = Qpu = Qmax maka didapat ukuran tangki atas minimum yang dapat melayani kebutuhan puncak, dan dapat dirumuskan sebagai berikut :

VE = Qpu x Tpu

Contoh 5 : Penghitungan tangki atas

Untuk contoh, diambil penaksiran dari contoh 2 sebelumnya dimana telah didapat :a. Qh-max = 36 m3/jam atau 600 liter/menitb. Qm-max = 0,9 m3/menit atau 900 liter/menit.

Dalam kaitannya rumusan tangki atas :Qp ekivalen dengan Qm-max = 900 liter/menit danQmax ekivalen dengan Qh-max = 600 liter/menit

Karena Qpu = Qmax ; Tp = 30 menit dan Tpu = 10 menit, maka :VE = (Qp – Qmax)Tp + (Qpu x Tpu) = (900 – 600)30 + (600 x 10) = 15.000 liter atau VE

= 15 m3.Apabila dikehendaki ukuran tangki atas minimal, maka Qp = Qpu = Qmax dan VE = Qpu x Tpu . dalam menggunakan rumus ini perlu diperhatikan bahwa Qpu

harus disesuaikan dengan Qp, bukan Qmax ; dengan demikian Qpu yang digunakan adalah 900 liter/menit ; bukan 600 liter.menit. karena itu VE minimum = 900 x 10 = 9000 liter atau 9 m3.

Page 57: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 50

Contoh 6 : Mencari ukuran pipa 1. ukuran pipa keluar dari tangki atas (distribusi) diperhitungkan laju alirannya

sebesar Qp , yaitu 900 liter/menit. Bila pipa yang digunakan adalah pipa PVC dan pada aliran standar (1,5 – 2 m/detik), maka berdasarkan diagram 1.2 (hal. 43),maka diperlukan pipa berdiameter antara 100 mm sampai 115 mm ; karena itu dipakai pipa PVC berdiameter 125 mm (5”)

2. Ukuran minimum pipa dari tangki bawah ke tangki atas (melalui pompa) diperhitungkan sesuai dengan laju aliran Qpu = Qmax = Qm-max , yaitu 600 liter/menit. Bila digunakan pipa PVC dengan kecepatan aliran standar 2 m/detik maka berdasarkan diagram 2, diperlukan satu pipa berdiameter kurang lebih 80 mm, karena itu dipakai pipa berdiameter 100 mm. namun karena pipa keluaran dari pompa tidak ada yang berukuran sebesar itu, maka perlu digunakan 2 pompa dengan 2 pipa keluaran yang dapat memberi laju aliran 300 liter, yaitu pipa berdiameter 65 mm.

3.2.2 Kapasitas tangki bawahTangki bawah (VR) berfungsi sebagai penyedia air bagi tangki atas yang kemudian pada akhirnya didistribusikan kepada pemakai. Oleh sebab pemakaian air selama satu hari (Qd) telah diketahui, maka tangki bawah paling sedikit harus menampung kebutuhan satu hari pemakaian (T) tersebut. Namun selama pemakaian, tangki bawah secara simultan akan mengalami pengisian dari PDAM, sumur (setelah difilter) atau kombinasinya. Sumber-sumber air ini tentunya mempunyai laju aliran (QS) yang berbeda-beda tergantung lokasi maupun jenis sumurnya. Karena itu perlu dilakukan survei pada awal proyek untuk mengetahui kemampuan / laju aliran dari masing-masing sumber yang dipilih guna mengetahui apakah sumber yang ada dapat memenuhi kebutuhan atau tidak. Apabila laju aliran suplai tangki bawah (QS) tersebut telah diketahui, maka volume tangji bawah tersebut dapat dihitung :

VR = Qd – (QS . TS)Dimana :VR = volume penyediaan air dalm tangki air bawah Qd = laju aliran kebutuhan air sehari (m3/hari)QS = laju aliran suplai / pengisian dari PDAM atau sumur (m3/jam)TS = jangka waktu pengisian ; paling lama senilai T (jam)T = jangka waktu pemakaian sehari (jam/hari)

Contoh 7. Penentuan kapasitas tangki bawah Misalnya, diambil dari contoh 2 (hal.53 ), perkantoran ; kebutuhan sehari telah diketahui Qd = 144 m/hari.

Diadakan sumber diambil dari dalam (deep well) dengan kapasitas laju aliran 100 liter/menit 6 m3/jam

Dari tabel 4. jangka waktu pemakaian sehari T = 8 jam/hari dan nilai ini dipergunakan untuk lamanya pengisian TS = 8 jam.

Volume tangki bawah : VR = Qd – (QS.TS) = 144 – (6 x 8) = 96 m3

Page 58: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 51

Bila digunakan 2 sumur maka kapasitas tangki akan mengecil menjadi :144 – (12 – 8) = 48 m3.

Dengan demikian dapat ditarik suatu hubungan bahwa :a. Makin besar laju aliran suplai (QS) mak mengecil kapasitas tangki bawah

( VR), demikian pula sebaliknya.b. Makin pendek waktu pengisiannya (TS) maka makin besar pulalah

kapasitas tangki bawah (VR), demikian pula sebaliknya.

SOAL LATIHAN 1. Kualitas air harus memenuhi syarat, yaitu seperti dibawah ini kecuali :

a. Tidak mengandung bakteri c. Berbaub. Tidak mengandung zat kimia d. Tidak mengandung organisme

2. Cara pengaliran air bersih dalam sistem pemipaannya agar sampai ke tempat yang diperlukan adalah:a. Up feed dan down feed c. Sistem pompa tekanb. Sistem vertical dan horizontal d. Sistem pipa ganda

3.

Sistem distribusi air bersih apakah gambar tersebut:a. Sistem up feed c. Sistem tangki tekanb. Sistem down feed d. Sistem pipa ganda

4.

Sistem distribusi air bersih apakah gambar tersebut:a. Sistem up feed c. Sistem tangki tekanb. Sistem down feed d. Sistem pipa ganda

5. Berikut ini beberapa metoda yang digunakan untuk menentukan besarnya laju aliran air, kecuali:a. Berdasarkan jumlah pemakaib. Berdasarkan jenis dan jumlah alat plambingc. Berdasarkan unit beban alat plambingd. Berdasarkan kapasitas tangki atas dan bawah

6. Mengapa dalam sistem pemipaan kenapa tidak diperbolehkan terjadi hubungan pintas

Page 59: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Bersih Dalam Bangunan 52

pipa yang memiliki kualitas air berbeda:a. Pencemaranb. Air dapat mangalir dari satu sistem ke sistem yang lainc. Air akan tidak layak untuk digunakand. Air akan berbau dan berbakteri

7. Pemasangan peredam pukulan air yang paling baik di pasang di:a. Di dekat alat plambingb. Pipa masuk yang tegak dan dekat dengan alat plambingc. Pipa keluar air dari tangki air dan dekat dengan tangki aird. Dalam satu gedung dipasang satu peredam pukulan air di tangki air

8. Jenis-jenis pompa yang sering digunakan dalam penyediaan air, kecualia. Pompa jenis putar : pompa sentrifugal, pompa diffuser/turbinb. Pompa jenis langkah positif: pompa torak, pompa tanganc. Pompa khusus: pompa vortex, pompa gelembung udara, pompa jet, pompa bilahd. Pompa tekan: pompa dengan satu tangki tekan dan dengan dua tangki tekan

9. Qh=Qd/T , rumus tersebut digunakan untuk menghitung kapasitas kebutuhan air berdasarkan:a. Jumlah penghunib. Jenis dan jumlah alat plambingc. Unit beban alat plambingd. Kapasaitas tangki atas atau bawah

10. Peralatan sistem penyediaan air dingin yang harus disediakan adalaha. Pompa, perpipaan, tangki atas/bawah, alat plambingb. Pompa, perpipaan, tangkic. Pompa, perpipaan, bak mandi, tangki atas/bawah, krand. Kran, shower, bak mandi, peredam pukulan air

Page 60: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 52

Page 61: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 53

1. AIR PANAS

Air, volumenya akan mencapai minimum pada temperatur 4° Celcius, dan akan bertambah pada temperatur yang lebih rendah atau lebih tinggi.Bila kerapatan ( density ) air pada temperatur 4°C dianggap sama dengan satu, maka air yang dipanaskan antara 4° C – 100° C, volumenya akan bertambah sekitar 4,3 %. Selanjutnya, bila air dipanaskan terus, pada suatu temperatur tertentu akan mendidih tergantung pada tekanan airnya. Makin tinggi tekanan airnya, maka makin tinggi pula titik didihnya.

Kualitas air panas mempunyai hubungan dengan temperatur airnya. Ternyata peningkatan temperatur pada air panas dapat mempercepat proses pengkaratan/ mengeraknya pipa.Secara umum, dapat dikatakan; setiap peningkatan temperatur 10° C, proses pengkaratan dipercepat 2 kalinya.Bila temperatur air mencapai 60° C, akan terjadi pelepasan zat asam yang terlarut dalam air, menimbulkan karbonat bebas dan proses pengkaratan elektrolit bertambah cepat.Dari berbagai penelitian pada pipa baja, pengkaratan mencapai maksimum pada suhu 70° C, karena itu dihindarkan pemanasan air lebih tinggi dari temperatur yang diperlukan.

Jelas, bahwa dalam perancangan maupun pemasangan instalasi air panas, aspek-aspek tersebut diatas harus diperhatikan.

Page 62: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 54

2. STANDAR TEMPERATUR AIR PANAS

Air panas digunakan untuk mandi, cuci muka/tangan, mencuci pakaian atau alat dapur dan sebagainya. Temperatur yang digunakan untuk berbagai keperluan tersebut berbeda-beda dan distandarkan sebagai berikut :

Tabel 2.1. Standar temperatur air panas

Jenis pemakaian Temperatur (°C)

1. Minum 50-55

2. Mandi : dewasa 42-55 anak-anak 40-423. Pancuran mandi/ shower 40-434. Cuci muka/ tangan 40-325. Cuci tangan utk pengobatan 43

6. Bercukur 46-52

7. Dapur : - macam-macam keperluan 45 - untuk mesin cuci : proses pencucian 45-60

proses pembilasan 70-80

8. Cuci pakaian - macam-macam pakaian 60

- bahan sutra dan wol 33-49

- bahan linen dan katun 49-60

9. Kolam renang 21-27

10. Cuci mobil ( bengkel ) 24-30

Pada sistem instalasi air panas sentral, terdapat kehilangan panas pada pipa distribusi, karen itu temperatur dalam tangki sentral haruslah lebih tinggi dari temperatur pemakaian; yaitu sekitar 55-60°C. Untuk hotel, biasanya digunakan temperatur 65°C.

Page 63: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 61

Tabel 2.2. Pemakaian air panas menurut jenis penggunaan gedung ( air panas pada temperatur 60°C )

Setiap orang Maksimum per Jangka waktu Kapasitas tangki kapasitas

tiap hari jam untuk pemakaian penyimpan untuk pemanasan

Jenis penggunaan gedung (l/org,hari) pemakaian sehari puncak pemakaian sehari untuk

(l/jam) (jam) (liter) pemakaian sehari

qd qh h v r

Rumah pribadi, rumah susun, hotel 7,5 - 150 1/7 4 1/5 1/7

Rumah sakit, per tempat tidur 130 1/10 4 1/10 1/10

Kantor 7,5 - 11,5 1/5 2 1/5 1/6

Pabrik 20 1/3 1 2/5 1/8

Restoran 1/10 1/10

Restoran; 3 x makan sehari 1/10 8 1/5 1/10

Restoran; 1 x makan sehari 1/5 2 2/5 1/6

Kamar mandi umum 30

1 x mandi per orang

catatan :1. Untuk rumah pribadi atau rumah susun, bila ada mesin cuci piring ditambah 60l/ hari setiap unit dan mesin cuci pakaian 150l/ hari setiap unit2. Hotel, jumlah pemakaian airnya tergantung pada jenis dan kelas hotel itu. Pada hotel kelas tinggi ( bintang 5 ), pemakaian air puncak rendah tetapi pemakaian air dalam sehari besar. Pada hotel komersial, pemakaian air puncaknya tinggi, tetapi pemakaian air sehari relatif kecil3. Pada beberapa rumah sakit, ada yang menggunakan kolam untuk fisioterapi, untuk itu harus diadakan perhitungan terpisah

Page 64: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 62

Tabel 2.3. Pemakaian air panas tiap alat plambing menurut jenis penggunaan gedung

Jumlah air panas (liter/jam) yang dialirkan ke tiap alat plambing, dengan temperatur 60°C

Jenis alat plambingRumah susun Klub Olahraga Rumah sakit Hotel Pabrik Kantor

Rumah Pribadi Sekolah

Penginapan Pemuda

Wastafel (pribadi) 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6Wastafel (umum) 15 23 30 23 30 45 23 - 57 30

Bathtub 76 76 114 76 76 - - 76 - 114

Mesin cuci piring 57190-570 - 190-570 190-760 76-380 - 57 76-380 76-380

Bak rendam kaki 11,4 11,4 45 11,4 11,4 45 - 11,4 11,4 45

Kitchen sink 38 76 - 76 114 76 76 38 76 76

Pantry sink 19 38 - 38 38 38 19 38 38

Laundry sink 76 106 - 106 106 - - 76 - 106Bak cuci pel 76 76 - 76 114 76 76 57 76 76

Shower 114 570 852 284 284 852 114 114 852 852

Untuk terapi / pengobatanpancuran mandi 1500bak rendam badan 2300bak rendam kaki 380bak rendam lengan 132bak rendam duduk 114bak rendam dengan air mengalir

625

Faktor pemakaian 0,30 0,30 0,40 0,25 0,25 0,40 0,30 0,30 0,40 0,40

Koefisien kapasitas penyimpanan 1,25 0,90 1,00 0,60 0,80 1,00 2,00 0,70 1,00 1,00• yang dimaksud dengan koefisien kapasitas penyimpanan adalah perbandingan antara kapasitas tangki penyimpan dengan laju aliran maksimum air panas dalam liter /jam

Page 65: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 63

Tabel 2.4. Unit beban alat plambing air panas, menurut jenis alat dan guna bangunan(temp. air panas 60°C)

Rumah Klub Olah Rumah Hotel & Pabrik Kantor Sekolah Penginapan

susun raga sakit asrama pemuda

Wastafel ( pribadi ) 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75wastafel ( utk. Umum ) - 1 1 1 1 1 1 1 1

Bathtub 1,5 1,5 - 1,5 1,5 - - -

Mesin cuci piring 1,5 5 untuk setiap 250 tempat duduk ruang makan

Kitchen sink 0,75 1,5 - 3 1,5 3 - 0,75 3

Pantry sink - 2,5 - 2,5 2,5 - - 2,5 2,5Bak cuci pel 1,5 2,5 - 2,5 2,5 2,5 2,5 2,5 2,5

Shower 1,5 1,5 1,5 1,5 1,5 3 - 1,5 1,5

Untuk terapi dan pengobatanBak rendam badan - - - 5 - - - - -Bak cuci bulat - 2,5 2,5 2,5 - 4 - 2,5 2,5

Bak cuci setengah bulat - 1,5 1,5 1,5 - 3 - 1,5 1,5

Kalau pemakaian utama air panas adalah untuk shower, misalnya pada klub atau pabrik, maka faktor pemakaian dianggap 1 Untuk gedung kantor yang dilengkapi pantry, dapat menggunakan angka klub (2,5)

Page 66: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 64

3. KEBUTUHAN DAN LAJU ALIRAN AIR PANAS

Kebutuhan dan laju aliran air panas, seperti juga pada air bersih, tergantung pada jenis pemakaian gedung (fungsi), jumlah pemakai, banyaknya alat plambing.

3.1. Kebutuhan berdasarkan jumlah pemakaiPenghitungan dilakukan dengan menggunakan tabel 2.1 dan rumus :

Qd = (N) (qd)Qn = (Qd) (qh)V = (Qd) (ν)H = (Qd) (γ) (th-tc)

Keterangan : Qd = jumlah air panas per hari (liter/hari) Qhmax= laju aliran air panas maksimum (liter/jam) V = Volume tangki penyimpanan (liter) H = Kapasitas pemanas (kcal/ jam) N = Jumlah orang pemakai air panas th = temperatur air panas (°C) tc = temperatur air dingin (°C)

Contoh 1. Perhitungan kebutuhan berdasarkan jumlah orang

Misal : Gedung apartemen yang berisi 50 unit.30 unit apartemen dengan 1 kamar tidur; 2 penghuni20 unit apartemen dengan 2 kamar tidur; 4 penghunisetiap unit dilengkapi bathtub, shower, wastafel, sink dapur dan bak cuci pakaian.

Jumlah orang dalam gedung: (30x2) + (20x4) = 140 org (N) Qd=Nxqd , Qd = 140x150 ltr = 21.000 liter/ hari Qhmax = Qdxγ , Qhmax = 21.000x(1/7) = 3.000 liter/ jam V = Qdxv , V = 21.000x(1/5) = 4.200 liter Misalkan th = 60 dan tc = 5 ;

Maka H = 3.000x(60-5) = 16.5000 kcal/ jam

Page 67: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 65

3.2. Kebutuhan berdasarkan jenis dan jumlah alat plambing

Dalam penghitungan dengan cara ini, beberapa hal perlu diperhatikan :a. Penghitungan menggunakan tabel 2.3.b. Nilai/ angka dari tabel diartikan sebagai volume efektif, karena itu dalam

menentukan volume tangki air penyimpanan air panas, perlu ditambah 25% sampai 30% unutk mengkompensasi volume pipa-pipa pemanas dan turunnya temperatur air pada waktu air dingin masuk tangki.

c. Dalam menghitung laju aliran air digunakan “Faktor pemakaian untuk alat plambing” sebagai berikut :

Rumah sakit, hotel = 25% Rumah pribadi, rumah susun, dan kantor = 30% Pabrik, sekolah = 40% Dst, ( lihat tabel 2.3.)

Contoh 2. Penghitungan berdasarkan alat plambingMisal, diambil kasus seperti contoh 1, untuk gedung apartemen 50 unit, tiap unit apartemen dilengkapi dengan bathtub, shower,wastafel, sink dapur, dan bak cuci pakaian.

Berdasarkan tabel 2.3.Bathtub 50x76 (liter/jam) = 3800Shower 50x114(liter/jam) = 5700Wastafel 50x7,5(liter/jam) = 375Sink dapur 50x38 (liter/jam) = 1900Bak cuci pakaian 50x76 (liter/jam) = 3800

Jumlah (Qh) = 15.575 liter/jam

Laju aliran air panas maksimum ( Qh-max):15.575 (ltr/jam)x0,3 = 4672,5 (ltr/jam) – (0,3=faktor pemakaian)

Volume tangki penyimpanan air panas (ν):4672,5x1,25 = 5840,6 liter – (1,25=koefisien kapasitas)

Kapasitas pemanas (H) dengan th=60°C dan tc=5°C4672,5x(60-5) = 256.987,5 kcal//jam

Komentar, perbandingan hasil penghitungan contoh 1 dengan 2.

Pada perhitungan dengan alat plambing (contoh 2) terlibat dihasilkan angka +50% lebih besar dibanding hasil contoh 1. Hal ini terjadi karena dalam contoh 2, nilai bathtub dan shower dijumlahkan, dimana hampir tak pernah terjadi orang mengisi bathtub (untuk berendam) sekaligus menggunakan shower.

Bila shower dihilangkan, dianggap memakai bathtub saja, diperoleh Qh=9875 l/jam dan Qhmax=9875x0,3= 2962,5 l/jam yang angkanya hampir sama dengan contoh 1.(3000l/jam)

Sebaliknya bila shower saja yang diperhitungkan, diperoleh

Page 68: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 66

Qh=11.775 l/jam dan Qhmax= 3.532,5 l/jam yang +15% lebih besar dari perhitungan contoh 1.; artinya dituntut laju aliran air yang lebih besar/ banyak dibanding dengan bathtub.

Dengan demikian dalam perancangan atau penghitungan kebutuhan, perlu dilakukan dalam berbagai cara dan diperiksa dengan teliti anggapan-anggapan yang digunakan dalam perhitungan tersebut, terutama yang menyangkut dengan kebiasaan-kebiasaan orang menggunakan peralatan plambing.

3.3. Kebutuhan berdasarkan beban unit alat plambing

Seperti juga pada penghitungan air bersih, tujuan dari penentuan kebutuhan adalah untuk mendapatkan laju aliran jam puncak. Pada penghitungan dengan cara ini, bila telah didapat nilai Qh, yaitu kebutuhan rata-rata per jam. Laju aliran jam puncak Qhmax, didapat dengan mengalikan Qh dengan suatu konstanta c1 yang bernilai antara 1,5 sampai 2. (lihat contoh-contoh pada penghitungan air bersih berdasarkan beban unit alat plambing).

Pada teknik penghitungan berdasar beban unit alat plambing, juga digunakan tabel pengkonversi alat plambing ke satuan unit beban (tabel 2.4) kemudian berdasar jumlah alat plambing, diperkirakan laju aliran dengan bantuan diagram 1 (kurva pengaliran serentak) hasil yang didapat adalah laju aliran pada jam puncak (Qhmax).

Unit alat plambing serentak(a)

Page 69: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 67

Unit alat plambing air panas(b)

Diagram 2.1. Pengaliran serentak, berdasrkan unit alat plambing air panas

4. Sistim penyediaan air panas

Yang dimaksud dengan sistim penyediaan air panas adalah instalasi yang menyediakan air panas dengan sumber air bersih, dipanaskan dengan berbagai cara, dengan instalasi lokal maupun sentral

4.1 Sistim pemanasan dengan instalasi lokal

Pada instalasi ini, pemanas air dipasang setempat dan sedekat mungkin dengan alat plambing yang membutuhkan air panas. Sumber kalor1 pemanas adalah listrik atau gas.

Keuntungan instalasi lokal ini adalah; air panas lebih cepat diperoleh, kehilangan kalor pada pipa kecil sekah , pemasangan dan perawatannya sdderhana. --Oleh karena filstalasi jenis sangat populer digunakan untuk rumah, bangunan kecil atau tempat yang kebutuhan air panasnya terbatas (dapur, kamar mandi).

1 Banyaknya energi panas atau kalor yang diperlukan 1 kg air agar temperaturnya naik

sebesar 10 C pada kondisi atsmosfir standar, didefinisikan sebagai 1 kcal (kilokaloria) . Banyaknya kalor yang dibutuhkan untuk pemanasan adalah Q = W ( t2 – t1) ; dimana Q banyak kalor (kcal); W = berat air yang dipanaskan (kg); t2 = temperatur awal ( 0 C ) dan t1 = teperatur akhir ( 0 C)

Page 70: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 68

Instalasi lokal ini dapat dibagi lagi menj adi 2 kelompok :

a. Pemanasan.sesaat (instantnequs)

Air dipanaskan dengan pipa-pipa yang di pasang dalam alat pernanas; sumber kalomya di.,dapat.dari gas atau - listrik Air setelah dipanaskan langsung dialirkan ke alat plambing.

Gambar 2.1. Pemanas instant, bahan bakar gas

b. Pemanasan simpan (storage) Air dipanaskan dalam suatu tangki yang dapat menyimpan panas dalarn jumlah yang tidak terlalu besar (tidak lebih dari 100 l). Sumber kalor juga dari listrik atau gas, dan untuk memanaskan air dalam tangki tentunya diperlukan waktu beberapa menit.

(a) jenis berdiri b) jenis digantung

Gambar 2.2. Pemanas tipe tangki penyimpan, bahan bakar gas.

4.2 Pemanasan dengan instalasi sentral

Sesuai dengan namanya, maka air panas dibuat disuatu bagian gedung, kemudian dengan pipa distribusi dialirkan keseluruh gedung yang rnemerlukannya. Bahan bakar yang digunakan pada umumnya minyak (solar ) listrik jarang dipakai sebab.harganya yang..mahal. Instalasi jenis ini biasa dipasang pada hoteL rumah. sakit . atau apartemen sewa yang besar.

Page 71: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 69

Instalasi sentral juga dapat dibagi menjadi 2 kelompok menurut sistim distribusi pemipaannya :

a. Sistem langsung atau sistem terbuka

Pada sistim ini, pipa hanya mengalirkan air panas dari tangki ke peralatan plambing saja. Kelemahannya adalah, meskipun pipa-pipa telah diisolasi setelah satu malam tak terpakaL keran-keran yang jauh dan tangki akan menghasilkan air dengan temperatur yang lebih rendah dari temperatur tangki, karena itu sistim ini jarang digunakan untuk bangunan besar.b. Sistim sirkulasi atau sistim tertutup

Pada sistim ini jaringan pipa merupakan jaringan tertutup. Meskipun tidak ada air panas yang digunakan, air tetap disirkulasikan dikembalikan ke tangki dengan bantuan pompa sirkulasi atau karena gaya gravitasi (alamiah). Dengan demikian temperatur air disemua keran dan disetiap saat mendekati temperatur yang ada dalam tangki. Karena itu, hampir semua pemasangan instalasi air panas masa sekarang menggunakan sisitim ini. Hanya saja terdapat berbagai variasi dalarn pemasangannya yaitu :

1. sistim distribusi aliran keatas (upfeed), air panas dialirkan melalui pipa utarna yang bercabang dilantai bawah.

2. sistim distribusi aliran kebawah (downfeed), air panas dialirkan melalui pipautama yang bercabang di lantai atas.

3. sistim distribusi kombinasi aliran keatas dan kebawah 4. sistim sirkulasi dengan pipa tunggal 5. sistim sirkulasi dengan pipa ganda /dua pipa. 6. tangki pemanas yang diletakkan diatap 7. tangki atas yang diletakkan dibawah.

Berbagai variasi pemasangan tersebut dapat dilihat contohnya pada gambar 2.3. sampai 2.10.

Page 72: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 70

Gambar 2.3. Sistem pengaliran keatas; tangki bawah dan pipa ganda; sirkulasi pompa

Page 73: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 71

(a) Pipa air balik pada setiap pipa tegak dan cabang (b) Pipa air balik hanya pada pipa tegak

Gambar 2.4. Sistem aliran keatas, tangki atas a. pipa ganda; b. pipa tunggal; sirkulasi pompa

Page 74: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 72

Gambar 2.5. Sistem kombinasi aliran atas dan bawah; pipa tunggal; sirkulasi pompa

Page 75: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 73

Gambar 2.6. Sistem aliran kebawah; tangki bawah; pipa ganda; sirkulasi pompa

Page 76: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 74

Gambar 2.7. Sistem aliran kebawah; tangki atas; pipa ganda; sirkulasi pompa

Gambar 2. 8. Sistem reverse return; tangki bawah, pipa ganda; sirkulasi pompa

Page 77: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 75

Gambar 2.9. Sistem reverse return; tangki bawah, pipa ganda; sirkulasi gravitasi

Gambar 2.10. Sistem Sistem reverse return; tangki bawah, pipa tunggal; sirkulasi gravitasi

Page 78: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 76

5. Beberapa hal yang penting dalam sistem

5.1 Kemiringan pipa

Udara yang larut dalam air yang dipanaskan mempunyai kecendrungan untuk melepaskan diri, dan karena sifatnya lebih ringan dari air, selalu berusaha mencari tempat yang lebih tinggi. Bila ada bagian pipa yang melengkung keatas, udara akan menggumpal pada puncak lengkungan tersebut dan menghambat aliran normal.

Agar hal tersebut tidak terjadi ,maka pipa horizontal dimiringkan searah dan seragam. Dalam sistem aliran keatas, pipa mendatar dimiringkan keatas sedangkan pada sistem aliran kebawah, pipa mendatar dimiringkan kebawah. Kemiringan dibuat securam mungkin (bila tempat mengijinkan), sekurang-kurangnya antara 1 : 200 sampai 1 : 300 dan pada titik tertinggi pipa miring tersebut diberi katup pelepas udara yang mudah dijangkau.

5.2 Perbandingan pipa sirkulasi tunggal dan ganda.

Pada sistem tunggal,pipa yang hanya mengantar air panas dari tangki pemanas tanpa pipa balik. Kondisi ini serupa dengan sistem langsung /terbuka, dimana terjadi air panas’diam’ didalam pipa saat peralatan plambing tidak digunakan. Air panas yang ‘diam’ itu akan mengalami penurunan temperatur. sering, sehingga air panas dalam pipa tidak ‘diam’ lagi.

Pada sistem pipa ganda, karena adanya pipa hantar dan pipa balik,maka selalu terjadi sirkulasi air panas meskipun tidak ada pemakaian alat plambing.karena mempunyai pipa ganda, maka jelas harganya lebih mahal dibanding dengan sistem pipa tunggal. Akibat sistem ini tidak cocok untuk rumah tinggal yang jarak antara tangki pemanas dengan keran kurang dari 5 m ; dan juga tidak cocok untuk gedung umum yang jarak keran dengan tangki pemanas tidak lebih dari 20 m.

5.3 Perbedaan sirkulasi gravitasi dengan sirkulasi pompa

Dalam sirkulasi gravitasi, aliran dalam pipa terjadi karena perbedaan tekanan yang ditimbulkan adanya perbedaan temperatur. Air yang lebih panas cendrung naik ketempat yang lebih tinggi,air dingin sebaliknya. Karena sifatnya yang alamiah, maka laju aliran air panas dalam sistem ini akan lambat juga. Akibatnya, sistem ini hanya cocok untuk gedung ukuran kecil saja.

Dalam sirkulasi pompa, laju aliran air dipercepat secara paksa dengan memasangkan pompa pada pipa aliran balik. Dan karena pompa ini ditujukan hanya untuk mengatasi kerugian panas dalam pipa saja, maka kekuatan pompa dibatasi hanya 3 sampai 5 kolom air saja (kurang lebih setengah atmosfir), dan agar hemat listrik perlu dipasang thermostat untuk mengatur mati/hidupnya pompa. Bila suhu air dalam aliran balik turun kebatas minimum yang direncanakan, thermostat mengirim perintah kemotor listrik agar menjalankan pompa, demikian pula sebaliknya.

Page 79: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 77

5.4 Reverse return untuk keseragaman temperatur

Dalam gedung besar, terutama yang mempunyai pipa utama horizontal cukup besar, seringkali sukar diusahakan keseragaman temperatur dengan hanya merancang perubahan diameter pipa saja. Agar temperatur tetap seragam, maka dibuatlah pipareverse return; yaitu pipa balik yang dibalik arahnya (lihat gambar 2.9 dan 2.10)

5.5 Pipa dan tangki ekspansi

Karena volume air berubah sesuai dengan temperatur air tersebut, maka diperlukan bagian peralatan yang mampu menampung perubahan volume tersebut, yaitu pipa ekspansi dan tangki ekspansi. Cara ini efektif untuk melepaskan udara yang terpisah dari arah air yang berada dalam tangki pemanas. Pipa ekspansi ini harus dipasang khusus dan terpisah dari pipa lainnya dan tidak ada katup apapun yang terpasang pada pipa itu.

Selain volume air yang membesar, pipa-pipa air panas juga mengalami pengembangan dan perpanjangan; terutama pipa tembaga. Karena itu ketebalan isolasi yang cukup disepanjang pipa menjadi perhatian untuk menampung pengembangan pipa. Untuk menampung perpanjangan pipa, maka pada daerah tertentu, pipa tersebut dibuat”loop”sebagaimana tercantum digambar berikut ini.

Page 80: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 78

Gambar 2.11. Sistem lengkap air panas , dingin dan kebakaran

Untuk mengalihkan beban ekstra volume

Gambar 2.12. Expansion loop

Page 81: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id
Page 82: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 80

6. konstruksi tangki pemanas sentral

Gambar 2.13. Contoh konstruksi pemanas sentral tipe horizontal

Page 83: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 81

Gambar 2.14. Contoh tangki pemanas tipe vertikal

Page 84: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Air Panas Dalam Bangunan 82

SOAL LATIHAN1. Bila kerapatan (density) air pada temperatur 4°C dianggap sama dengan satu, maka air

yang dipanaskan antara 4° C – 100° C, volumenya akan bertambah sekitar 4,3 . permasalahan yang timbul pada air panas menggunakan pipa besi adalaha. Pipa akan cepat karatan, kerak c. Air akan keruhb. Air tidak dapat panas secara maksimal d. Air berbau

2. Alat pemanas untuk menyediakan air panas dalam bangunan yang sering digunakan adalah, kecualia. Pemanas air dengan gas c. Pemanas air dengan energi suryab. Pemanas air dengan listrik d. Pemanas air dengan pemanas simpan

3. Sistem penyediaan air panas dapat dibagi beberapa menurut sistem pipanya:a. Sitem aliran ke atas (up feed) dan ke bawah (down feed)b. Sistem pipa tunggal dan sirkulasic. Sirkulasi secara alam dan paksaand. Sirkulasi tertutup dan terbuka

4. Sistem distribusi air panas secara sentral dengan sistem langsung (terbuka) memiliki kekurangan, yaitua. Air panas sampai ke alat plambing dengan temperature yang lebih rendahb. Air panas sampai ke alat plambing dengan temperature samac. Cocok untuk bangunan yang besard. Boros dalam pemipaan

5. Sistem distribusi air panas secara sentral dengan sistem sirkulasi memiliki kekurangan, yaitua. Air panas selalu di sirkulasikanb. Air panas sampai ke alat plambing dengan temperature samac. Cocok untuk bangunan yang besard. Boros dalam pemipaan

Page 85: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 82

Page 86: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 83

1. KLASIFIKASI SISTEM PEMBUANGAN

Klasifikasi berdasarkan jenis air buangan:

a. Sistem pembuangan air kotor.

Adalah sistem pembuangan untuk air buangan yang berasal dari kloset, urinal, bidet, dan air buangan yang mengandung kotoran manusia dari alat plambinglainnya ( black water ).

b. Sistem pembuangan air bekas.

Adalah sistem pembuangan untuk air buangan yang berasal dari bathtub, wastafel, sink dapur dan lainnya ( grey water ). Untuk suatu daerah yang tidak tersedia riol umum yang dapat menampung air bekas, maka dapat di gabungkan ke instalasi air kotor terlebih dahulu.

c. Sistem pembuangan air hujan.

Sistem pembuangan air hujan harus merupakan sistem terpisah dari sistem pembuangan air kotor maupun air bekas, karena bila di campurkan sering terjadi penyumbatan pada saluran dan air hujan akan mengalir balik masuk ke alat plambing yang terendah.

d. Sistem air buangan khusus.

Sistem pembuangan air yang mengandung gas, racun, lemak, limbah pabrik, limbah rumah sakit, pemotongan hewan dan lainnya yang bersifat khusus.

Klasifikasi berdasarkan cara pengaliran :

a. Sistem gravitasi.

Air buangan mengalir dari tempat yang lebih tinggi ke tempat yang lebih rendah secara gravitasi ke saluran umum yang letaknya lebih rendah ( gambar. 3.1 hal. 78 ).

b. Sistem bertekanan.

Sistem yang menggunakan alat ( pompa ) karena saluran umum letaknya lebih tinggi dari letak alat plambing, sehingga air buangan di kumpulkan terlebih dahulu dalam suatu bak penampungan, kemudian di pompakan keluar ke roil umum. Sistem ini mahal, tetapi biasa di gunakan pada bangunan yang mempunyai alat – alat plambing di basement pada bangunan tinggi / bertingkat banyak. ( gambar 3.2. hal. 79 ).

Page 87: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 84

Gambar 3.1. Skema umum sistem pembuangan gravitasi

Page 88: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 85

Gambar 3.2. Skema umum sistem pembuangan bertekanan

Tangki penampung air kotor

Page 89: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 86

2. EFEK SIFON DAN PERANAN PIPA VEN PADA

SISTEM PEMBUANGAN

Gambar 3.3. Fungsi dari perangkap dan fungsi ven

• Perangkap air / leher angsa, ( water trap ) pada setiap alat plambing berfungsi sebagai penyekat ( seal ) agar gas atau bau dari saluran pembuangan tidak dapat masuk ruang ( gambar. a ).

• Meskipun pada alat plambing telah di pasang perangkap, akibat efek sifon, perangkap tak berfungsi karena air dalam perangkap terhisap keluar ( gambar. b ).

• Penanggulangan efek sifon pada kasus ( gambar.b ), dengan membuat pipa ven untuk memasukkan udara antara perangkap dan air pada pipa tegak ( gambar. c ). Namun perlu di ingat bahwa efek sifon ini dapat terjadi tidak hanya pada pipa tegak saja, tetapi juga pada pipa horizontal yang menjadi pembuangan sederetan alat plambing.

(a) salah, tidak ada perangkapgas pembusukan masuk ke ruang

(b) salah, tidak ada pipa venair perangkap terhisap keluar

(c) benar,udara masuk melalui ven, menghilangkan efek siphon

Page 90: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 87

Gambar 3.4. Sirkuit pipa ven

• Gas akibat pembusukan terjadi dalam pipa pembuangan tegak maupun horizontal. Pada suatu kondisi, mempunyai tekanan udara yang mampu menembus perangkap air dan masuk ke dalam ruangan.

• Tekanan gas dalam pipa juga terjadi karena adanya tekanan air yang turun pada pipa tegak, mengakibatkan adanya efek tiup ( blow out ).

• Pipa ven berfungsi tidak hanya untuk mengatasi efek sifon saja, tetapi juga berfungsi sebagai pelepas gas / bau yang terjadi karena dua kasus di atas.

KESIMPULAN : Peran penting dari pipa ven menyebabkan system pipa ven menjadi satu kesatuan sistem dengan pipa pembuangan.

Page 91: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 88

3. BAGIAN – BAGIAN SISTEM PEMBUANGAN

a. Alat – alat plambing yang di gunakan untuk pembuangan seperti bathtub, wastafel, bak – bak cuci piring, cuci pakaian, kloset, urinal, bidet, dsb.

b. Pipa – pipa pembuangan.c. Pipa ven.d. Perangkap dan penangkap ( interceptor ).e. Bak penampung dan tangki septic.f. Pompa pembuangan.

Bagan dari system pembuangan dan pipa ven yang mencakup seluruh komponen di atas dapat di lihat di gambar. 3.5, hal. 83

3.1 Alat plambing untuk pembuangan.

Alat plambing yang di gunakan dalam suatu gedung tergantung pada fungsi gedung itu sendiri. Jumlah kebutuhan alat plambing minimal untuk suatu fungsi gedung telah di bicarakan pada bahasan “ Penyediaan Air Bersih Dalam Bangunan “, ( lihat bab. 1; tabel 1.5 ; hal 47 )

3.2 Pipa – pipa pembuangan.

Adalah pipa pembuangan yang menghubungkan perangkap alat plambing dengan pipa pembuangan lainnya.

Ukuran pipa ini harus sama atau lebih besar dengan ukuran lubang keluar perangkap alat plambing dan untuk mencegah efek sifon pada air yang ada dalam perangkap, jarak tegak dari ambang puncak perangkap sampai pipa mendatar di bawahnya tidak lebih dari 60 cm ( lihat gambar sebelah ).

Pipa pembuangan meliputi semua pipa tegak, pipa miring dan pipa horizontal berbagai ukuran yang menghubungkan mulai dari alat plambing sampai ke bak penampungan atau riol umum / kota.

Tergantung merk yang dipakai

Page 92: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 89

Gambar 3.5. Bagan lengkap komponen sistem pembuangan dan pipa ven

Page 93: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 90

3.2.1. Kemiringan pipa buangan dan kecepatan aliran

• Sistem pembuangan harus mampu mengalirkan dengan cepat, air buangan yang mengandung bagian – bagian padat. Karena itu pipa pembuangan harus mempunyai kemiringan yang cukup, sesuai dengan jenis air buangan yang harus di alirkan.

• Biasanya pipa pembuangan horizontal di anggap tidak penuh berisi air buangan, melainkan hanya 2/3 dari penampang pipa, sisanya ‘kosong’ berisi udara.

• Sebagai pedoman umum, kemiringan pipa horizontal dapat di buat sama atau lebih dari satu per diameter pipanya ( dalam mm ) dan standar penggunaan umum adalah sbb :

Tabel 3.1. Kemiringan pipa horizontal

Diameter pipa ( mm ) Kemiringan minimum

75 atau kurang 1/50 ( 20% )

100 atau kurang 1/100 ( 1% )

• Kecepatan dalam pipa horizontal, berkisar antara 0,6 sampi 1,2 m/det. Kemiringan pipa dapat di buat lebih landai dari tabel 1.1 asalkan kecepatannya tidak kurang dari 0,6 m/det. Kalau kurang kotoran air buangan mengendap, sebaliknya kalau terlalu cepat akan menimbulkan turbulensi aliran, gejolak tekanan dalam pipa yang dapat merusak fungsi air penyekat dalam perangkap alat plambing. Di samping itu, kemiringan lebih curam dari 1/50 cenderung menimbulkan efek sifon yang akan menyedot air penyekat dalam perangkap alat plambing.

• Pipa yang berdiameter kecil akan mudah tersumbat oleh endapan atau kerak meskipun di pasang dengan kemiringan yang cukup. Karena itu, untuk jalur yang panjang, ukuran diameter pipa tidak kurang dari 50mm.

3.2.2. Syarat umum pipa pembuangan

a. Pipa cabang mendatar harus mempunyai ukuran sekurang – kurangnya sama dengan diameter terbesar dari perangkap alat plambing yang di layaninya. Diameter perangkap dan pipa pembuang alat plambing dapat di lihat pada tabel 3.2, hal. 86 – 87.

b. Pipa tegak harus mempunyai ukuran sekurang – kurangnya sama dengan diameter terbesar cabang mendatar yang di sambungkan ke pipa tegak tersebut.

Page 94: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 91

c. Pipa tegak maupun pipa cabang mendatar tidak boleh di perkecil diameternya dalam arah aliran buangan. Pengecualian hanya pada kloset, pada lubang keluarnya yang berdiameter 100mm boleh di pasang pengecualian pipa ( reducer ) 100 x 75 mm. Cabang mendatar yang melayani satu kloset harus mempunyai diameter sekurang – kurangnya 75 mm, dan untuk dua kloset atau lebih sekurang – kurangnya 100 mm.

d. Pipa pembuangan yang tertanam di tanah harus mempunyai ukuran sekurang –kurangnya 50 mm.

e. Jarak antar interval cabang minimum 2,5 m. Yang di maksud dengan interval cabang adalah jarak pada pipa tegak antara dua titik di mana cabang mendatar di sambungkan pada pipa tegak (Lihat gambar 3.6, hal. 88).

Air buangan dari pipa cabang mendatar masuk ke dalam pipa tegak dengan aliran tak teratur dan baru jatuh sepanjang kira – kira 2,5 m dalam pipa tegak baru alirnnya menjadi teratur. Jarak ini ditetapkan agar perubahan tekanan dalam pipa tegak masih dalam batas yang diijinkan walaupun ada air buangan yang masuk ke dalam pipa tegak dari cabang mendatar berikutnya.

f. Pipa ofset adalah pipa tegak yang berubah arah, biasanya di sebabkan karena kesulitan desain organisasi ruang. Apabila pipa ofset tak dapat di hindarkan, maka haruslah memenuhi persyaratan khusus ( lihat gambar. 3.7, hal. 89).

Tabel 3.2. Diameter min. perangkap dan pipa buang alat plambing

Alat plambingDimeter

perangkap min. ( mm )

Diameter pipa buangan alat

plambing min. (mm)Catatan

1 Kloset 75 75

2 Urinal

- tipe menempel di dinding

- tipe gantung di dinding

- tipe dengan kaki,sifon jet

- untuk umum

untuk 2 orang

untuk 3-4 orang

untuk 5-6 orang

40

40-50

75

50

65

75

40

40-50

75

50

65

75

1

2

3 Bak cuci tangan ( lavatory ) 32 32-40 3

4 Wastafel ( wash basin ) :

- ukuran biasa

- ukuran kecil

32

25

32

23 4

Page 95: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 92

5 Bak cuci, praktek dokter gigi, salon dan tempat cukur

32 32-40 3

6 Drinking fountain 32 32

7 Bak mandi ;

- bathub

- untuk umum

40-50

50-75

40-50

40-50

5

6

8 Shower 50 50

9 Bidet 32 32 7

10 Bak cuci pel biasa

- ukuran besar

65

75-100

65

75-100 8

11 Bak cuci pakaian 40 40

12 Kombinasi bak cuci pakaian dengan bak cuci biasa

50 50

13 Kombinasi bak cuci tangan, untuk 2-4 orang

40-50 40-50

14 Bak cuci tangan r. sakit 40 40-50 3

15 Bak cuci lab. Kimia 40-50 40-50 9

16 Buangan lantai 40-75 40-75 11

17 Macam-macam bak cuci

- dapur, untuk rumah

- hotel, komersial

- bar

- dapur kecil, cuci piring

- dapur, cuci sayuran

- pengancur kotoran (disposer), untuk rumah

- disposer besar, untuk restoran

40-50

50

32

40-50

50

40

50

40-50

50

32

40-50

50

40

50

10

10

Catatan tabel 3.2. :

1. Ada dua macam perangkap dan pipa buangan, sesuai dengan tipe urinal-nya.

2. Tidak selalu tersedia di toko.

3. Pipa buangan 32 mm boleh di gunakan, tetapi karena pipa ven mudah rusak, lebih disukai pipa ven dengan lup. Di anjurkan menggunakan pipa buangan 40 mm untuk menjamin ventilasi dan mengatasi kemungkinan mengendapnya sabun atau bahan lainnya pada dinding pipa.

4. Bak cuci tangan kecil ini biasanya tanpa lubang peluap, dan digunakan dalam kakus atau kamar mandi rumah atau apartemen. Pipa buangan alat plambing harus berukuran 32 mm.

5. Pipa harus dipasang kalau ukuran pipa buangan 40 mm. Kalau ada keraguan tentang ukuran pipa ven, hendaknya dipasang ukuran pipa buangan 50 mm.

6. Ukuran pipa buangan harus disesuaikan dengan kapasitas bak.

7. Di beberapa negara bagian Amerika Serikat, jenis ini dilarang, karena letak lubang air keluar rendah sehingga ada kekhawatiran pencemaran oleh air kotor dari alat plambing lainnya.

8. Ada dua macam dengan ukuran pipa buangan 75 mm dan 100 mm.

Page 96: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 93

9. Ada dua macam perangkap dan pipa buangan, sesuai dengan bak cucinya.

10. Pipa buangan 40 mm untuk perngkap “p”, dan 50 mm untuk perangkap lemak.

11. Untuk kamar mandi “barat” sebenarnya tidak dipasang buangan lantai. Kalau memang diperlukan, seperti pada kamar mandi di Indonesia, ukuran harus disesuaikan dengan banyknya air yang dibuang.

• Tabel ini tidak boleh digunakan untuk alat plambing dengan perangkap yang menyatu didalam, dan pipa buangan alat plambing tidak boleh lebih kecil dari pada lubang keluar alat plambing tersebut. Untuk kloset, pipa buangan boleh diperkecil sampai 75 mm.

Jarak antar pipa cabang

Catatan :Masing-masing a, b, e lebih besar dari 2,5 m Masing-masing c, d kurang dari 2, 5 m

(a) Jumlah interval cabang 0

(b) Jumlah interval cabang 1

Page 97: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 94

Menghitung jumlah interval cabang

Gambar 3.6. Interval cabang

Gambar 3.7. Pipa offset dan persyaratannya

Ven pelepas akan diperlukan apabila peralatan buang atau pipa buang horizontal bersambung pada A atau B

Tidak ada peralatan atau pipa buang horizontal boleh disambung ke pipa tegak dalam daerah 600 mm di atas atau dibawah ofset

Ofset 450 atau lebih kecil dari garis vertical dapat dianggap sebagai pipa tegak yang lurus dalam menentukan ukuran

Page 98: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 95

• Pipa offset yang bersudut 45° atau kurang terhadap garis tegak ditentukan ukurannya seperti pipa pembuangan tegak.

• Pipa offset yang bersudut lebih dari 45°, ditentukan ukurannya seperti pipa pembuangan gedung. Pipa tegak diatas offset ditentukan seperti ukuran pipa tegak biasa. Sedangkan pipa tegak dibawah offset sekurang-kurangnya sama dengan ukuran pipa offset itu sendiri.

3.2.3. Ukuran pipa pembuangan

Menentukan ukuran pipa pembuangan didasarkan pada 3 tabel utama yaitu:

1. Tabel 3.3; ”Beban unit alat plambing untuk air kotor” (hal. 91-93); yang diambil dari pedoman plambing Indonesia (1979,hal 118-119). Tabel ini mengkonversi jenis alat plambing menjadi “satuan beban unit”.

2. Tabel 3.4; “maximum beban unit alat plambing yang diijinkan untuk pipa horizontal dan pipa tegak buangan” (hal. 94); yang diambil dari pedoman plambing Indonesia (1979, hal.121).

Tabel ini digunakan untuk mencari ukuran diameter pipa cabang horizontal dan pipa tegak yang merupakan pengumpul air kotor dari berbagai alat plambing.

3. Tabel 3.5; “Maximum beban unit alat plambing yang diijinkan untuk pipa pembuangan gedung “(hal. 94). Tabel ini digunakan untuk menghitung diameter pipa pembuangan mendatar terakhir yang mengumpulkan air kotor dari beberapa pipa tegak, dan membuang ke riol umum.

Contoh – contoh mencari ukuran pipa buangan diberikan dihalaman 96,97

Page 99: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 96

Table 3.3. Beban unit alat plambing untuk air kotor

Alat plambingDiameter

perangkap min (mm)

Beban unit alat

plambingCatatan

1 Kloset : tangki gelontor

katup gelontor

75 4

8

2 Urinal

- tipe menempel di dinding

- tipe gantung di dinding

- untuk umum, model palung setiap 60 cm

40

40 – 50

4

4

2

3 Bak cuci tangan (lavatory) 32 1 3

4 Bak cuci tangan (wash basin)

- ukuran biasa

- ukuran kecil

32

25

1

0,5

4

5 Bak cuci, praktek dokter gigi

- alat perawatan gigi

32

32

32

32

6 Bak cuci, salon, tempat cukur 32 2

7 Drinking fountain 32 32

8 Bak mandi : - bathtub

- untuk umum

40 – 50

50 - 75

3

4 - 6

5

9 Shower

- untuk rumah

- untuk umum, tiap pancuran

50 2

3

10 Bidet 32 3

11 Bak cuci pel 75 – 100 8 6

12 Bak cuci pakaian 40 2 6

13 Kombinasi bak cuci biasa dan bak cuci pakaian

50 3 6

14 Kombinasi bak cuci dapur dengan penghancur kotoran

40 4

15 Bak cuci tangan, kamar bedah

- ukuran besar

- ukuran kecill

2

1,5

Page 100: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 97

Alat plambing

(lanjutan )

Diameter perangkap min (mm)

Beban unit alat

plambingCatatan

16 Bak cuci, lab. Kimia 40 – 50 1,5

17 Bak cuci, macam – macam

- dapur, untuk rumah

- dapur dengan penghancur makanan untuk rumah

- hotel, komersial

- bar

- dapur kecil, cuci piring

40 – 50

40 – 50

50

32

40 - 50

2 – 4

3

4

1,5

2 – 4

6

18 - Mesi cuci, untuk rumah

- Pararel, di hitung setiap orang

40

-

2

0,5

19 Floor drain, buangan lantai 40

50

75

0,5

1

2

7

Kelompok alat plambing dalam km.mandi, terdiri : 1 kloset, 1 wastafel, 1 bathtub atau 1 showe dengan : - kloset tangki gelontor

- kloset tangki gelontor

6

8

21 Pompa penguras ( sump pump ) untuk setiap 3,8 liter/menit

2 8

Catatan :

1. Periksa juga ukuran perangkap pada tabel 3.2.

2. Tidak selalu tersedia di took.

3. Untuk bak cuci tangan, perangkap 2 mm dan 40 mm mempunyai beban air buangan sama.

4. Hanya bak cuci tangan tanpa lubang peluap yang biasa dipasang di rumah atau apartemen.

5. Shower yang di pasang di atas bak mandi/bathub tidak menambah beban unit alat plambing.

6. Alat plambing ini tidak harus masuk perhitungan beban keseluruhan pipa pembuangan utama, karena wajarnya tidak sedang di gunakan pada waktu beban air buangan mencapai puncaknya. Tetapi alat plambing ini harus

Page 101: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 98

diperhitungkan bebannya untuk menentukan pipa cabang dimana alat - alat tersebut dipasang.

7. Ukuran buangan lantai disesuaikan dengan luas lantai yang harus di keringkan.

8. Tidak pompa penguras, juga untuk mesin lainnya yang menghasilkan air seperti penyejuk udara ( AC ).

9. Misalkan, ada pompa penguras dari penampung yang mempunyai laju aliran 380 l/menit, maka nilai bebanunit alat plambingnya adalah ( 380 liter/3,8 ) x 2 = 200 UAP.

Beban unit alat plambing yang tidak tercantum pada tabel diatas, dapat menggunakan beban unit ekuivalen, sbb :

Diameter pipa buangan alat plambingatau perangkapnya ( mm )

Beban unit alat plambing

32 mm atau kurang

40

50

65

75

100

1

2

3

4

5

6

Tabel 3.4. Maksimum beban unit alat plambing yang diijinkan, untuk cabang horizontal dan pipa tegak buangan

Diameter pipa (mm)

Beban maksimum unit alat plambing yang boleh disambungkan kepada :

Cabang mendatar Satu pipa tegak setinggi 3 interval

Pipa tegak dengan tinggi lebih dari 3 interval

Jumlah untuk satu pipa tegak

Jumlah untuk cabang satu interval

32 1 2 2 1

40 3 4 8 2

50 5 9 24 6

65 10 18 42 9

75 14 27 60 14

100 96 192 500 72

125 216 432 1100 160

150 372 768 1900 280

200 840 1760 3600 480

250 1500 2660 5600 700

300 2340 4200 8400 1050

375 3500 - - -

Page 102: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 99

Tabel 3.5. Maksimum beban unit alat plambing yang di ijinkan, untukcabang horizontal dan pipa tegak buangan

Diameter pipa (mm)Maksimum beban unit alat plambing yang disambung pada pipa pembuangan gedung

Kemiringan pipa

1/192 (0,5%) 1/96 (1%) 1/48 (2%) 1/24 (4%)

50 21 26

65 22 28

75 18 23 29

100 104 130 150

125 234 288 345

150 420 504 600

200 840 960 1152 1380

250 1500 1740 2100 2520

300 2340 2760 3360 4020

375 3500 4150 5000 6000

Contoh 1.

Mencari ukuran pipa pembuangan dari sekelompok peralatan plambing sebagaimana tercantum di gambar.

Page 103: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 100

No. alatAlat

plambingBeban unit

alat plambingSeksi

Beban unit alat plambing

tiap seksi

Ukuran pipa (mm)

1 2 3 4 5 6

A Kloset 8 a – b 8 65

B Kloset 8 b – c 16 100

C Bak cuci pel 8 c - i 24 100

D Urinal 4 d - e 4 50

E Urinal 4 e – f 8 65

F Urinal 4 f – g 12 75

G Wastafel 1 g – h 13 75

H Wastafel 1 h - i 14 75

Diameter pipa akhir i - j 24 + 14 = 38 100

• nilai kolom 3 ; di dapat dari tabel 3.3 ; berdasarkan jenis alat plambing

• kolom 5, merupakan jumlah akumulasi dari beban unit per cabang menurut urutan saluran pembuangan (akumulasi dari kolom 3)

• kolom 6, diameter pipa di dapat dari tabel 3.4, berdasarkan nilai dari kolom 5

• diameter pipa akhir, karena menampung seksi (a – i) dan (d – j); maka merupakan penjumlahan dari kedua pipa tersebut, dan pipa tegak mempunyai ukuran minimal sama dengan pipa akhir ini (lihat syarat umum pipa)

Contoh 2.

Pipa vertikal1,2,3,4,5 merupakan pipa tegak pembuangan sekelompok alat plambingdiatasnya dengan besaran beban unit alat plambing telah diketahui /dihitung (UAP) seperti pada contoh 1. Pipa – pipa tegak tersebut disambungkan pada pipa pembuangan gedung a s/d f dan diteruskan ke pembuangan umum (riol).

Yang akan di tentukan adalah diameter pipa pembuangan gedung yang direncanakan mempunyai kemiringan ± 1/96 (1%).

Peringatan : Angka ukuran sistem pipa buang dari gedung menunjukkan harga “unit alat plambing” (UAP) . Angka dalam (mm) menyatakan diameter dari pipa

Page 104: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 101

No. pipa tegakBeban unit dari pipa

tegakSeksi

Beban unit alat plambing

tiap seksi

Diameter pipa (mm)

1 2 3 4 5

1 100 a-b 100 100

2 80 b-c 180 125

3 80 c-d 260 150

4 100 d-e 360 150

5 150 e-f 510 200

Diameter pipa akhir sampai ke riol 200

• kolom 4, merupakan akumulasi beban unit dari kolom 2

• kolom 5, adalah ukuran diameter pipa berdasarkan kolom 4 dengan menggunakan tabel 3.5.

3.3. Perangkap

Tujuan utama dari sistem pembuangan adalah mengalirkan air buangan dari dalam gedung keluar, ke riol umum tanpa menimbulkan pencemaran pada gedungnya sendiri. Tetapi, karena peralatan plambing tidak selalu digunakan terus – menerus, maka ada suatu saat pipa tak terisi air kotor, dapat terjadi pembusukan, timbul gas atau masuknya serangga ke dalam pipa. Untuk mencegah hal ini, maka perlu di pasang perangkap yang berbentuk huruf “ U “, berisi air yang berfungsi sebagai penyekat.

3.3.1. Syarat – syarat perangkap

Kedalaman air penyekat berkisar antara 50 – 100 mm.

Konstruksi perangkap harus sedemikian rupa sehingga tak terjadi pengendapan atau tertahannya kotoran dalam perangkap.

Konstruksi perangkap harus sederhana sehingga mudah di perbaiki bila ada kerusakan dan dari bahan tak berkarat.

Tidak ada bagian bergerak atau bersudut dalam perangkap yang dapat menghambat aliran air.

3.3.2. Jenis perangkap

Jenis perangkap dapat di kelompokkan menjadi :

a. Perangkap yang di pasang pada alat plambing dan pipa pembuangan.

Page 105: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 102

b. Perangkap yang menjadi satu dengan alat plambing.

c. Perangkap yang di pasang di luar gedung.

a. Perangkap P b. Perangkap S

Sekat perangkap Sekat perangkap

c. Perangkap U d. Perangkap drum

e-1. Perangkap buang lantai

a. Perangkap P

e. Perangkap jenis genta

e-2. Untuk bak cuci di dapur

(a) Contoh dari mangkuk kloset jenis sifon bagi orang barat

(b) Contoh bak peturasan pria (digantung di dinding)

Page 106: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 103

(a) (b)

3.3.3. Perangkap yang di larang

a. Perangkap yang di buat dari bahan plastik lunak, berupa pipa fleksibel yang dibentuk seperti “spiral”. Sebab meskipun terdapat sejumlah air yang dapat berfungsi sebagai penyekat, namun tidak stabil bentuknya, tak dapat diperkirakan tinggi air sekat yang ada.

b. Larangan pemasangan perangkap ganda. Yang dimaksud adalah pemasangandua perangkap dalam satu aliran air buangan. Pemasangan yang sedemikian menyebabkan adanya udara terperangkap diantara dua perangkap tersebut. Selain udara ini menghambat aliran, pada saat terjadi aliran pada perangkap yang hilir, udara yang terperangkap tadi mendorong sekat air pada perangkap yang hulu.

3.3.4. Pengecualian pemasangan perangkap

Tiap alat plambing tidak selalu diharuskan mempunyai perangkapnya masing –masing, terutama untuk alat plambing yang digunakan untuk mencuci barang yang tidak menimbulkan bau, atau seperti deretan bak cuci pada laboratorium, cuci tangan atau cuci pakaian. Contoh dengan syarat pemasangannya.

Pipa buangan bersambung untuk 3 bak, 3 bak cuci pakaian, atau 3 bak cuci tangan

Pipa buangan bersambung dengan satu perangakap

Pipa buangan bersambung

Page 107: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 104

3.4. Penangkap (interceptor)

Penangkap (interceptor) bertujuan untuk mencegah/menangkap kandungan air kotor yang berupa bahan – bahan yang berbahaya, bahan yang dapat menyumbat atau mempersempit penampang pipa, yang dapat mempengaruhi kemampuan sistem pembuangan atau untuk menampung air buangan dari proses yang mungkin masih mengandung bahan yang berharga (missal, logam mulia), sehingga masih mungkin untuk diambil kembali.

Bahan – bahan yang dapat menimbulkan kesulitan pada pipa pembuangan antara lain :

minyak, bahan bakar atau lemak dalam jumlah besar dari dapur restoran atau bengkel kendaraan

tanah dan pasir

potongan rambut di barber atau salon

kertas tissue, penyapu muka atau bahan rias lainnya

bahan buangan dari kamar operasi rumah sakit

benang atau serat dalam jumlah besar pada binatu.

3.4.1. Persyaratan penangkap

a. Penangkap yang sesuai harus dipasang sedekat mungkin dengan alat plambingyang di layaninya, dengan maksud agar pipa pembuangan yang mungkin mengalami gangguan sependek mungkin.

b. Konstruksinya harus mudah dibersihkan, dilengkapi dengan tutup yang mudah dibuka dan letak dari penangkap dalam ruang sedemikian rupa sehingga sampah dari penangkap mudah dibuang keluar ruang.

c. Konstruksi penangkap harus mampu secara efektif memisahkan minyak, lemak dan sebagainya dari air buangan.Konstruksi penangkap umumnya juga merupakan ‘perangkap’, karena itu bila telah dipasang penangkap dilarang memasang perangkap, sebab dapat terjadi ‘perangkap ganda’.

3.4.2. Jenis penangkap

a. Penangkap lemak.

Berfungsi memisahkan lemak atau minyak yang ada dalam air buangan mesin cuci piring, bak cuci dapur, saluran pembersih dapur restoran. Penangkap jenis ini banyak dibuat dari beton dan baja tahan karat, didalamnya disekat dengan beberapa dinding untuk memperlambat aliran air buangan; untuk memberi waktu agar lemak mempunyai kesempatan ‘membeku’ dan mengapung dalam air. Karena itu mulut pipa pembuangan dari penangkap ini terletak ± 10 cm di bawah muka air.

Page 108: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 105

b. Penangkap bahan bakar dan minyak pada bengkel.

Pada dasarnya serupa dengan penangkap lemak untuk dapur. Hanya saja tutupnya harus rapat dan disediakan pipa ven khusus, agar gas – gas yang timbul dan mudah terbakar dapat disalurkan keluar dengan aman.

Page 109: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 106

c. Penangkap pasir.

Digunakan pada tempat cuci kaki di kolam renang atau tempat mandi di pantai, dimana air buangannya mengandung tanah atau pasir. Penangkap pasir atau tanah ini juga dipasang pada saluran terbuka air hujan di luar gedung. Prinsip kerjanya adalah mengendapkan tanah atau pasir, karena itu mulut dari pipa pembuangan dari penangkap terletak di muka air dalam penangkap seperti konstruksi ‘over – flow’.

d. Perangkap plastik, rambut dll.

Page 110: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 107

3.5. Sistem ven.

Tujuan dari system ven, sebagaimana telah dijelaskan dimuka (lihat 3.2,”Efek sifon dan peranan pipa ven pada system pembuangan”, hal. 80), terutama untuk menghilangkan efek sifon dan efek tiupan (blow out), yang dapat menghilang fungsi dari perangkap air.

3.5.1. Jenis sistem ven

a. Sistem ven tunggal

Pada system ini, pada setiap alat plambing dipasang sebuah pipa ven yang dihubungkan dengan pipa ven lainnya atau langsung dibuang keluar. Sistem ini merupakan yang terbaik, tetapi paling banyak menggunakan pipa.

Page 111: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 108

b. Sistem ven lup

Pada system ini, pipa ven melayani dua atau lebih alat plambing(paling banyak 8), dipasang pada cabang mendatar pipa buangan dan disambungkan ke pipa ven tegak. Pipa ven lup ini dipasangkan di depan alat plambing yang paling jauh dari pipa tegak buangan.

c. Sistem ven pipa tegak

Dalam system ini, hanya ada pipa ven tegak saja, tidak dipasang pipaven jenis lainnya. Semua pipa pembuangan dari alat plambing disambungkan langsung ke pipa tegak pembuangan. System ini juga disebut sebagai system pipa tegak tunggal atau system pembuangan tunggal dan diterapkan pada gedung dimana pipa tegak pembuangan dapat dipasang didekat pada alat plambing, seperti apartemendan hotel. Pipa ven tegak (ven stack) ini merupakan perpanjangan dari pipa tegak air buangan, di atas cabang mendatar pipa buangan tertinggi.

d. Sistem ven bersama

Adalah sistem ven dimana pipa ven dipasang untuk melayani dua alat plambing yang bertolak belakang atau sejajar. Sistem ini banyak di terapkan pada rumah susun,hotel.

e. Sistem ven basah

Pada sistem ini pipa pembuangan juga berfungsi sebagai pipa ven. Oleh karena itu, beban air buangan sebaiknya hanya setengah dibanding dengan pipa pembuangan sejenis dari ukuran yang sama.

Page 112: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 109

f. Sistem ven balik

Sistem ini diterapkan bila pipa ven tunggal tidak dapat disambung ke pipa ven lainnya yang lebih tinggi atau langsung ke udara luar hinga harus di belokkan ke bawah terlebih dahulu.

g. Sistem ven yoke

Pipa tegak air pembuangan yang melayani lebih dari 10 interval cabang harus dilengkapi dengan pipa ven yoke untuk setiap 10 interval cabang dihitung dari cabang lantai paling atas.

Pipa pembuangan daerah A sampai B, berfungsi juga sebagai pipa ven

Page 113: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 110

Pipa ven yoke ini merupakan ven pelepas yang menghubungkan pipategak air buangan ke pipa tegak ven untuk mencegah perubahan tekanan dalam pipa tegak air buangan yang bersangkutan.

3.5.2. Persyaratan pipa ven

a. Kemiringan pipa ven

Pipa ven harus dibuat dengan kemiringan cukup agar titik air yang terbentuk atau air yang terbawa masuk ke dalamnya dapat mengalir kembali ke pipa pembuangan secara gravitasi.

b. Cabang pada pipa ven

Pada waktu membuat cabang pipa ven, di usahakan agar udara tidak akan terhalang oleh masuknya air kotor. Sambungan yang baik dan salah adalah sbb :

Page 114: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 111

c. Tinggi pipa ven horisontal

Bagian mendatar dari ven lup, harus diletakkan paling sedikit 15 cm diatas muka air peluapan alat plambing tertinggi (wastafel misalnya, lihat gambar. ven lup, hal. 103;105). Di larang membuat pipa ven mendatar dibawah lantai seperti contoh di bawah ini :

Page 115: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 112

d. Ujung pipa ven

Ujung pipa ven terakhir harus terbuka ke udara luar dan agar sehat maka perlu di tutup dengan kawat anti serangga dan mengikuti syarat – syarat seperti gambar.

3.5.3. Ukuran pipa ven

Dalam “ Pedoman plambing Indonesia 1979 “, tercantum ketentuan tentang ukuran sbb :

1. Ukuran pipa ven lup dan sirkuit minimum adalah 32 mm dan tidak boleh kurang dari setengah kali diameter cabang horizontal pipa buangan atau pipa tegak ven yang disambungkannya.

Page 116: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 113

2. Ukuran pipa ven pelepas minimum 32 mm dan tidak boleh kurang dari setengah dari diameter cabang mendatar pipa buangan yang dilayaninya.

3. Ukuran pipa ven tegak tidak boleh kurang dari ukuran pipa pembuangan yang dilayaninya dan selanjutnya tidak boleh diperkecil sampai ke ujung terbuka.

4. Ukuran pipa pelepas untuk offset pipa pembuangan harus sama atau lebih besar dari diameter pipa ven tegak atau pipa tegak air buangan (diambil yang terkecil diantaranya).

5. Ukuran pipa yoke harus sama atau lebih besar dari diameter pipa ven tegak atau pipa tegak buangan (diambil yang terkecil diantaranya).

6. Ukuran pipa ven untuk bak penampung air buangan minimum harus 50 mm.

Untuk menentukan ukuran pipa ven, didasarkan pada ‘ beban unit alat plambing ‘ dengan dua tabel yaitu :

1. Tabel 3.6, hal. 108, ukuran pipa cabang horizontal ven dengan lup.

2. Tabel 3.7, hal. 109, ukuran dan panjang pipa ven.

Tabel 3.6. Ukuran pipa cabang horizontal ven dengan lup

Ukuran pipa air kotor/buangan

(mm)

Unit alat plambing (angka

maksimum)

Diameter ven lup (mm)

40 50 65 75 100 125

Panjang horizontal maksimum (m)

40 10 6 - - - - -

50 12 4,5 12 - - - -

50 20 3 9 - - - -

75 10 - 6 12 30 - -

75 30 - - 12 30 - -

75 60 - - 48 24 - -

100 100 - 2,1 6 15,6 60 -

100 100 - 1,8 5,4 15 54 -

100 500 - - 4,2 10,8 42 -

125 700 - - - 4,8 21 60

125 1100 - - - 3 12 42

Tabel 3.7. Ukuran dan panjang pipa ven

Ukuran pipa tegak air buangan (mm)

Beban unit alat plambing yang disambung kan

Diameter pipa ven yang diperlukan (mm)

32 40 50 65 75 100 125 150 200

Panjang maks. pipa ven (m)

32 2 9

40 8 15 45

40 10 9 30

50 12 9 22,5 60

50 20 7,8 15 45

Page 117: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 114

65 42 9 30 90

75 10 9 30 60 180

75 30 18 60 150

75 60 15 24 120

100 100 10,5 30 78 300

100 200 9 27 75 270

100 500 6 21 54 210

125 200 10,5 24 105 300

125 500 9 21 90 270

125 1100 6 15 60 210

150 350 7,5 15 60 120 390

150 620 4,5 9 37,5 90 330

150 960 7,2 30 75 300

150 1900 6 21 60 210

200 600 15 45 150 390

200 1400 12 30 120 360

200 2200 9 24 105 330

200 3600 7,5 18 75 240

250 1000 22,5 37,5 300

250 2500 15 30 150

250 3800 9 24 105

250 5600 7,5 18 75

Contoh perhitungan ven :

Tentukan ukuran pipa ven dari contoh 1, pipa air kotor hal. 85, dengan ketentuan tambahan sbb :

pipa ven horizontal di atas plafon tidak ada yang lebih panjang dari 6 m

diandaikan wc dalam contoh terletak dalam bangunan 5 lt dengan jarak 3,5 m, dan tiap lantai mempunyai wc yang sama, tersusun dalam satu garis vertical dan menggunakan pipa tegak pembuangan yang sama, tersusun dalam satu garis vertical dan menggunakan pipa tegak pembuangan yang sama

Page 118: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 115

telah dihitung beban unit alat plambing sbb untuk peralatan A, B, C, sejumlah 24 UAP dengan pipa pembuangan air kotor diameter 100 mm, dilayani oleh satu pipa ven tegak ke pipa ven horizontal (diatas plafond) seksi 1. Dari tabel 3.6, untuk pipa air kotor 100 mm, unit plambing maksimumnya 100 (lebih dari 24) dan dibawah diameter pipa ven 65 mm, panjang pipa ven maksimum 6 m (telah ditetapkan tidak ada panjang pipa ven horizontal yang lebih dari 6 m). Jadi, pipa ven horizontal seksi 1 aman bila menggunakan diameter 65 mm

untuk beban unit alat plambing D, E, F, G,H sejumlah 14 UAP dengan pipa air kotor diameter 75 mm, dilayani oleh 1 pipa ven tegak ke pipa ven horizontal seksi 2. Dengan cara yang sama dengan diatas didapat pipa ven horizontal seksi 2 juga berdiameter 65 mm

pipa ven horizontal 3 menampung penggabungan seksi 1 dan seksi 2, menghubungkannya dengan pipa ven tegak utama bangunan, dengan demikian mempunyai beban sebesar 24 + 14 = 38 UAP ekivalen dengan pipa kotor (tabel 3.4) = 100 mm. Dari tabel 3.6 dan cara yang sama dengan sebelumnya, didapat diameter pipa ven horizontal seksi 3 juga 65 mm.

Tinggi bangungan 5 X 3,5 = 17,5 m, berarti pipa ven tegak minimal mempunyai panjang 17,5 m.

Beban unit alat plambing untuk 5 lantai adalah 5 X 38 = 190 UAP. Dari tabel 3.7, pada kolom ukuran pipa buangan 10 mm, dapat melayani 200 UAP dan dibawah kolom diameter pipa ven 65 mm, jauh melampaui kebutuhan yang hanya 17,5 m. Jadi untuk pipa ven tegak digunakan pipa diameter 65 mm.

WC : Kloset dengan katup gelontor 2 bhU : Urinal menempel di dinding 3 bhL : Bak cuci tangan , lavatory 2 bhSK : Bak cuci pel 1 bh

Page 119: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 116

Rekapitulasi perhitungan :

SeksiBeban unit

alat plambing

Ukuran pipa pembangunan

(mm)

Panjang kebutuhan

pipa ven (m)

Diameter pipa ven

(m)

1 24 100 Kurang dr. 6 65

2 14 75 Kurang dr. 6 65

3 24+12=38 100 Kurang dr. 6 65

Pipa tegak 5 X 8 = 190 100 17,5 65

3.6 Lubang pembersih (clean out)

Kotoran dan kerak akan mengendap dan melekat pada dinding pipa pembuangan setelah jangka waktu lama. Disamping itu kadang-kadang benda kecil atau benda lainnya disengaja atau tidak masuk kedalam pipa. Karena itu lubang pembersih pipa diperlukan, baik untuk pipa didalam maupun diluar gedung.

3.6.1 Syarat lubang pembersih

1. Harus dipasang ditempat yang mudah dicapai dan mempunyai ruang sekelilingnya yang cukup luas untuk orang bergerak membersihkan pipa. Untuk pipa ukuran 65 mm, jarak bebas sekeliling lubang paling sedikit 30 cm dan untuk pipa berdiameter 75 mm dan lebih besar, jarak bebas minimalnya adalah 45 cm.

2. Lubang pembersih harus dipasang pada :

a. Awal pipa cabang horizontal atau pipa pembuangan gedung.

b. Pipa mendatar yang panjang.

c. Belokan pipa baik vertikal maupun horizontal.

d. Ujung pipa bawah tegak dan disepanjang pipa tegak pada setiap jarak 2 atau 3 lantai.

e. Sambungan antara piap pembuangan gedung dengan roil.

f. Disetiap jarak tertentu disepanjang jarak pipa yang tertanam.

Page 120: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 117

3. Jarak antar lubang pembersih disepanjang pipa pembuangan untuk pipa berdiameter sampai 100 mm, tidak boleh lebih dari 15 m. Untuk pipa yang lebih besar, tidak boleh lebih dari 30 m.

3.6.2 Ukuran lubang pembersih

a. Untuk pipa berdiameter sampai dengan 100 mm, ukuran lubang pembersih harus sama dengan ukuran pipa. Sedangkan untuk pipa yang berukuran lebih dari 100 mm dapat dibuat lubang dengan ukuran 100 mm.

b. Untuk pipa yang ditanam dalam tanah, diperlukan bak kontrol yang lebih besar dari lubang pembersih. Penutup bak kontrol harus rapat agar gas atau bau tidak bocor keluar. Pipa tertanam yang berukuran kurang dari 200 mm masih diperkenankan memakai lubang pembersih, bukan bak kontrol.

c. Bak kontrol sebagai pengganti lubang pembersih pada pipa bawah tanah dipasangkan ditempat pipa tersebut membelok tajam, berubah diameternya, bercabang atau pada lokasi seperti pada lubang pembersih. Ukuran bak kontrol harus sesuai dengan ukuran pipanya dan cukup besar untuk memudahkan pembersihan. (lihat gambar perangkap diluar gedung, hal 88)

3.6.3 Pemasangan

a. Setiap lubang pembersih harus dipasang pada arah berlawanan dari arah aliran

b. Tutup lubang pembersih mudah dibuka dan dibuat rata dengan dinding atau lantai, tidak boleh diplester atau ditutup bahan lantai (keramik, ubin,dsb)

c. Lubang pembersih pada bagian bawah pipa tegak dapat dipasang pada lantai atau dinding terdekat

d. Contoh pemasangan pada dinding dan lantai bangunan dapat dilihat pada gambar di hal.114.

Page 121: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 118

Gambar 3.8. Contoh pemasangan clean out pada gedung

3.7 Bak penampungan dan pompa air kotor

Untuk suatu keadaan dimana riol umum terletak diatas pipa pembuangan utama gedung, maka diperlukan adanya bak penampungan air kotor untuk menampung

Page 122: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 119

semua air kotor dari gedung, kemudian dipompakan keluar ke riol umum (lihat gambar 3.2, hal.79). Bak penampungan, meskipun dapat dibuat satu saja (bak penampungan campuran) untuk menampung semua air kotor buangan gedung (kecuali air hujan), sebaiknya dipisah-pisahkan menurut kualitas air kotornya, misalnya bak untuk menampung air bekas cuci dan mandi, rembesan air lantai basement yang terpisah dengan air kotor dapur besar restoran, hotel, rumah sakit, dsb.

Gambar 3.9. Contoh bak penampung air rembesan pada basement

Bak penampung beton, dengan alasan efisiensi menjadi bagian dari pondasi pelat ganda ( double slab) dari bangunan tinggi. Namun karena jarak antara pelat tidak cukup dalam maka bak penampung dibuat lebih dalam lagi dari pondasi

3.7.1 Syarat-syarat bak penampung air kotor

a. Bak penampung harus kedap air, tidak membocorkan gas atau bau dan dilengkapi dengan pipa ven, pompa, saklar otomatik pengatur operasi pompa dan alarm yang menyatakan muka air tertinggi dan terendah.

Pipa ven disini berfungsi sebagai :

1. membuang gas keluar ketempat yang tidak mengganggu

2. memasukan udara kedalam bak pada saat pompa beroperasi, karena itu ukuran minimum pipa ven adalah 50 mm.

3. Dinding bak penampung tidak boleh menyatu dengan bak penampung air bersih

4. Harus dilengkapi dengan lubang pemeriksa (manhole), paling sedikit berdiameter 60 cm, agar orang dapat masuk kedalam untuk melakukan pemeriksaaan dan perawatan perlengkapan yang ada dalam bak. Lubang pemeriksaaan ini dibuat ditempat yang mudah dicapai dan sekeliling lubang mempunyai ruang yang cukup luas untuk bekerja. Tutup lubang pemeriksa dikonstruksikan agar tidak memungkinkan gas atau bau bocor keluar

Page 123: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 120

5. Dasar bak penampungan harus dibuat miring antara 1/15 sampai 1/10m, dan bagian paling rendah dibuat lekukan isapan pompa dengan syarat sbb

3.7.2 Pompa pembuangan

Pompa pembuagan, berdasarkan penggunaannya (banyak sedikitnya benda padat yang dikandungnya) dibagi menjadi pompa air kotor, pompa drainase dan pompa penguras. Berdasarkan pemasangannya pada bak penampung dibagi menjadi pompa bak basah dan pompa bak kering.

1. Pompa air kotor

Pada prinsipnya, karena air kotor mengandung berbagai benda padat dengan berbagai tingkat campuran, maka pompa harus tidak mudah tersumbat. Karena itu, pompa air kotor mempunyai desain khusus. Impeller pompanya didesain lebih lebar dari pompa biasa agar kotoran dapat lewat dengan mudah, biasanya didesain dengan hanya menggunakan 1 atau 2 sudut saja atau bahkan tanpa sudut dengan bentuk khusus.

2. Pompa drainase

Pompa ini juga disebut sebagai pompa air bekas karena digunakan untuk memompa air kotor yang sedikit mengandung kotoran padat, seperti misalnya air cuci, air mandi,dsb.

3. Pompa penguras (bilge pump)

pompa yang digunakan untuk memompa atau menguras air buangan yang tidak mengandung kotoran padat seperti misalnya air rembesan pada ruang bawah tanah, air buangan mesin pendingin, air hasil pembersihan tangki air bersih dsb.Pompa untuk air jenis ini biasanya digunakan pompa sentrifugal biasa.

4. Pompa bak basah

Yang dimaksud dengan pompa bak basah adalah pompa yang dipasangkan dalam bak penampungan langsung, terendam (submersible) dalam air kotor. Dengan demikian tidak diperlukan ruang pompa khusus dalam bak penampungan.

Page 124: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 121

Gambar 3.11. Pemasangan pompa pada bak basah

Gambar 3.12. Pompa bak basah terendam

5. Pompa bak kering

Pada jenis ini, pompa dipasang dalam ruang pompa terpisah dari bak penampungan, karena itu dibutuhkan 2 manhole, 1 untuk bak penampungan dan 1 lagi untuk pompa

Page 125: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 122

Gambar 3.13. Pemasangan pompa pada bak basah

3.8 Tangki septik dan rembesan

Tangki septik sebenarnya serupa saja dengan bak penampungan air kotor, tetapi lebih ditujukan penggunannya untuk menampung air kotor buangan dari bangunan ditempat yang tidak terjangkau oleh riol umum/kota. Prinsip kerja dari tangki septik adalah mengolah dan memisahkan antara air dengan kotoran dengan cara pengendapan. Pengolahan dilakukan oleh bakteri anaerobic yang merubah kotoran baku menjadi Lumpur. Air hasil pemisahan (70% lebih bersih) dialirkan keluar secara gravitasi dan diresapkan ketanah, sedangkan hasil endapan (Lumpur) harus dibuang secara berkala dengan bantuan layanan mobil tangki air kotor pemerintah setempat. Dengan demikian tangki septic biasanya terletak diluar bangungan (mudah dicapai mobil tangki) dan tidak ada peralatan pompa yang dipasangkan.

Sistem pembuangan air kotor dengan tangki septic terdiri tangki septiknya sendiri, sumur resapan atau bidang resapan yang berisi pipa-pipa resapan.

Page 126: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 123

Gambar 3.14. Sistem pembuangan dengan tangki septik

Gambar 3.15. Komponen sistem pembuangan

3.8.1 Syarat jarak

Oleh sebab kemungkinan pencemaran yang besar maka standar Amerika NPC (National Plambing Code) menentukan peryaratan sbb :

Kotak pendistribusian dari besi untuk 4 atau 5 cabang pipa

Tangki septic dari beton (atas) dan besi ( bawah), bentuk dan ukuran yang biasa di jumpai

Sumur resapan dari beton frefabricated

Tangki septic dengan bidang resapan

Tangki septic dengan sumur resapan

Kotak distribusi

Pipa resapan

Page 127: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 124

Tabel 3.8. Jarak komponen menurut NPC

Jenis komponen

Jarak minimun terhadap : (m¹)

Sumur terbuka/bor

Bangunan/

rumah

Batas pagar

Bidang resapan

Sumur resapan

Tangki septik 15 1,5 - - -

Kotak distribusi 15 - - - -

Bidang resapan 30/15² 3 3 - -

Sumur resapan 30 6 3 6 6

Catatan :

1) Satuan asli dalam feet, sudah dikonversi menjadi m (meter)

2) Jarak sumur dengan bidang resapan dapat dikurangi menjadi setengahnya (15 m) bila dinding sumur terbuka, atau casing sumur bor dibuat kedap air sedalam 15 m atau lebih dari muka tanah.

Gambar 3.16. Syarat jarak komponen sistem tangki septik

3.8.2 Tangki septic, syarat dan ukuran

Karena tangki septic serupa dengan bak penampung air kotor, maka persyaratan bak penampung air kotor berlaku untuk tangki septic (lihat 3.7.1 hal. 115), terutama tentang perlunya kedap air, pipa ven, kemiringan lantai bak serta manhole. Demikian pula syarat ukuran pipa air kotor berlaku untuk pipa masuk dan keluar tangki septic (lihat 3.2.2 hal.85).

Garis pagar/ property line

Page 128: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 125

Syarat ukuran tangki septic :

a. Tangki septic harus mempunyai ruang udara diatas permukaan air kotor min setinggi 30 cm.

b. Ukuran ruang penampung tangki septic min adalah lebar min = 0,9 m, panjang min = 1,5 m, kedalaman min = 1,2 m (sudah termasuk ruang udara 0,3 m).

c. Untuk bangunan yang digunakan untuk rumah tinggal/hunian, vol air kotor yang ditampung dapat diperhitungkan berdasarkan vol 0,14 – 0,17 m³ air kotor perorang, selama ukuran tangki septic yang terjadi tidak lebih kecil dari ukuran min yang tercantum di (b).

d. Untuk bangunan umum volume air kotor yang ditampung dapat diperhitungkan berdasarkan 0,057 – 0,086 m³ air kotor/orang

e. NPC, menganjurkan ruang tangki septic dibagi menjadi 2 bagian, 2/3 untuk ruang air kotor baku dan 1/3 bagian untuk ruang lumpur.

Tabel 3.9. Rekomendasi ukuran tangki septic untuk rumah tinggal1

Jumlah orang

Ukuran dalam tangki septic, sudah termasuk ruang udara 30 cm

Panjang ( m ) Lebar ( m ) Dalam tinggi ( m )

10 1,80 0,90 1,20

15 2,20 1,10 1,20

20 2,50 1,25 1,20

25 2,80 1,40 1,20

30 3,00 1,50 1,30

35 3,20 1,60 1,30

40 3,30 1,65 1,40

45 3,50 1,75 1,40

50 3,60 1,80 1,50

60 3,90 1,95 1,50

70 4,00 2,00 1,50

80 4,40 2,20 1,60

90 4,60 2,30 1,80

100 5,00 2,50 1,80

1 Rekomendasi menurut Salvan, George S. Arhitectural Utilities vol 1 ; 1986; hal 108

Page 129: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 126

Contoh 1 :

Berapa ukuran minimum dalam tangki septic pada bangunan umum yang melayani 200 orang ?

- volume air kotor : 200 x 0,057 m³ = 11,4 m³

- bila kedalaman air di ambil 1,5 m, lebar 2,0 m maka panjang = 3,8 m

- ukuran ruang min. tangki septic ; ( d x l x p ) = 1,8 x 2,0 x 3,8 m

3.8.3. Resapan

Bila desain tangki septic tergantung pada jumlah orang yang dilayaninya, maka resapan sangat tergantung pada permeabilitas ( daya serap ) tanah, tinggi permukaan air tanah ( water table ) serta luas dan kemiringan tanah setempat. Dan sebagaimana telah disinggung sebelumnya terdapat 2 cara meresapkan air kotor :

a. Peresapan melalui sumur resapan

b. Peresapan melalui bidang resapan

3.8.3.1 Sumur resapan

Sistem sumur resapan merupakan sistem yang kompak, membutuhkan lahan yang lebih kecil dibanding dengan bidang resapan yang menggunakan pipa. Namun sumur resapan tidak boleh digunakan bila muka air tanah tinggi. Muka air tanah paling sedikit harus 60 cm di bawah dasar sumur resapan. Bila muka air tanah lebih tinggi dari ketentuan tersebut, maka air kotor dari sumur resapan langsung mencemari air tanah.

Untuk volume air buangan yang besar, dapat digunakan beberapa sumur resapan dengan konfigurasi sbb :

Gambar 3.17 Konfigurasi sumur resapan

Page 130: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 127

Air kotor yang di keluarkan oleh sumur resapan, di tampung oleh lubang galian dari sumur resapannya sendiri, terutama oleh luas bidang keliling dari lubang galian. Kemampuan resap dinding lubang galian sumur resapan tergantung pada struktur tanahnya dan telah diteliti dan di tabelkan McGuiness ( 1971, hal. 125) sbb :

Tabel 3.10. Bidang absorbsi untuk sumur resapan

Struktur tanahLuas efektif absorbsi yang dibutuhkan sumur resapan per 2 orang ( m² )

Pasir kasar campur kerikil

Pasir halus

Lempung campur pasir

Lempung bercampur banyak pasir dan kerikil

Lempung bercampur sedikit pasir dan kerikil

1,80

2,70

4,50

7,20

14,40

Catatan, Standar asli di hitung per bedroom; dengan tiap bedroom 2 orang.

Berdasarkan tabel 3.10 diatas, desain tangki septic dan sumur resapan dapat dibuat.

Contoh 2 :

Desain ukuran tangki septic dan sumur resapan untuk rumah tinggal yang mempunyai 4 k.tidur, berpenghunu 8 orang ( tiap kamar 2 orang ), kondisi tanah adalah tanah liat berpasir ( sandy loam ) dan muka air tanah berada 3,6 m di bawah muka tanah.

Dari tabel 3.9, direkomendasikan ruang untuk tangki septic berukuran untuk volume air kotor sebanyak 1,8 x 0,9 x 0,9 = 1,46 m³.

2/3 bagian dari ruang tangki septic digunakan untuk ruang air kotor baku dan sisanya untuk ruang lumpur. Dengan demikian, ruang air kotor air baku = ( p x l x d ) = 1,2 x 0,9 x 1,2 m dan ruang lumpur ( p x l x d) = 0,6 x 0,9 x 1,2 m.

Dari tabel 3.10, untuk satu sumur resapan dengan tanah liat berpasir yang melayani 2 orang diperlukan luas daerah resapan 4,50 m² atau lubang galian

berdiameter =14,3

450,4 x= ± 2,3 m dengan keliling lingkaran x d = 3,14 x 2,3

= 7,2 m.

Untuk melayani 8 orang, dibutuhkan bidang resapan 2

8x 4,50 m² = 18 m²,

atau lubang galian berdiameter 2,4 m dengan kedalaman 2,7

18= ± 2,5 m.

Page 131: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 128

Catatan = Luas daerah resapan = 4

d2 d2 =

L4

d = L4

Gambar 3.18. Tangki septic dan sumur resapan berdasar soal no 2

3.8.3.2 Bidang resapan

Pada suatu daerah yang mempunyai muka air tanah tinggi, maka alternatif sistem resapan yang dapat digunakan adalah bidang resapan, yaitu penggunaan pipa – pipa resapan yang diletakkan dalam suatu parit galian dengan lebar dasar parit tertentu. Pipa yang terbaik adalah pipa tanah liat berlubang – lubang berdiameter 10 cm yang diletakkan diatas lapisan kerikil. Pipa tersebut tidak disambungkan bahkan diberi celah sekitar 0,5 cm. Diatas pipa diletakkan kertas aspal atau plastik lembaran dengan maksud agar tidak terjadi rembesan air kotor ke atas atau sebaliknya air hujan tidak masuk ke dalam pipa resapan.

Contoh gambar. pipa resapan lihat gambar 3.19 dan untuk syarat konstruksi pemasangan pipa resapan lihat tabel 3.11, sedangkan tabel 3.12 dan tabel 3.13 merupakan alat menghitung panjang dan lebar alat parit resapan yang dibutuhkan sesuai dengan volume air kotor yang akan diresapkan.

Page 132: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 129

Gambar 3. 19. Konstruksi pipa resapan

Tabel 3.11. Syarat konstruksi pipa dan bidang resapan

Konstruksi bidang resapan Standar

Jumlah min. cabang pipa / bidang resapan 2 buah

Maks. panjang cabang pipa tunggal 30 m

Lebar min. galian bawah pipa 45 cm 45 cm

Diameter min. pipa resapan 10 cm

Kemiringan maks. bidang resapan 1 / 200

Jarak antar pipa resapan 1,80 m

Min. luas bidang absorpsi Lihat tabel 3.12

Tabel 3.12. Bidang absorpsi untuk pipa resapan, hasil test perkolasi

Waktu yang dibutuhkan air untuk turun satu 2,5 cm ( 1" )( menit )

Luas efektif bidang absorpsi alas parit resapan yang dibutuhkan ( m² per 2 orang )

Sampai dengan 2 4,50

3 5,40

4 6,30

5 7,20

10 9,00

15 11,70

30 16,20

60 21,60

Lebih dari 60 Di desain khusus

Catatan ;

a. Standar asli dalam bedroom ( tiap kamar 2 orang ) dan dalam ft. b.Setiap hunian / rumah tinggal harus menyediakan minimum 13,5 m².

Catatan tentang test perkolasi pada tabel 3.12 :

Page 133: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 130

Tes perkolasi dimaksudkan untuk mengetahui daya serap tanah ( meski tanah dalam keadaan basah ), bila struktur tanahnya belum/tidak diketahui. Pada tabel 3.12 karena standar aslinya menggunakan inch, maka penurunan air permukaan pada test tersebut berskala 2,5 cm.

Test perkolasi dilaksanakan sbb :

Buat lubang ditanah yang diuji berukuran 30 x 30 cm dengan kedalaman antara 70 sampai 100 cm.

Lubang diisi oleh air sampai penuh dan dibiarkan sampai habis.

Lubang diisi air lagi setinggi h ≥ 15 cm, dan dengan bantuan stopwatch,diamati dan dicatat berapa lama permukaan air tersebut turun setiap 2,5 cm. Harga penurunan ini berubah – ubah, biasnya diawal cepat kemudian melambat.

Dihitung nilai rata – rata penurunannya per 2,5 cm ( dalam menit ).

Tabel 3.13. Ukuran bidang resapan dan jarak pipa

Lebar alas parit Rekomendasi kedalaman parit

Jarak antar cabang pipa resapan

Luas efektif bidang absorpsi per 30 cm

panjang parit

cm cm m m²

45

60

75

90

45 – 75

45 – 75

45 – 90

60 – 90

1,80

1.80

2,30

2,70

0,135

0,180

0,225

0,270

Catatan : bila lahan memungkinkan jarak antar cabang pipa lebih baik diperjauh.

Contoh 3.

Rencanakan bidang dan pipa resapan yang diperlukan untuk air kotor hasil pengolahan tangki septic seperti pada soal 2. Tetapi sekarang telah diketahui ( dari hasil tes perkolasi ) bahwa waktu yang diperlukan air untuk turun permukaannya sebanyak 2,5 cm, adalah 10 menit.

Dari tabel 3.12, bila waktu perkolasi untuk 2,5 cm adalah 10 menit maka dibutuhkan luas alas parit 9 m² per 2 orang.

Untuk 8 orang dibutuhkan luas parit 8/2 x 9 = 36 m².

Jika lebar alas parit yang digunakan adalah 60 cm ( seperti pada gambar. 20 ), maka berdasar tabel 3.13, luas bidang resep efektif tiap 30 cm panjang parit adalah 0,18 m². Jadi, total panjang parit / pipa yang dibutuhkan adalah ( 36/0,18 ) x 0,3 m = 60 m.

Tetapi pada tabel 3.11, untuk pipa tunggal panjang maks. hanya diperbolehkan 30 cm.

Page 134: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 131

Bila pipa dijadikan 4 cabang, maka panjang tiap pipa adalah 60/4 m = dan jarak antar pipa ( as ke as ) adalah 1,8 m, kedalaman parit 45 – 75 cm ( tabel 3.13 ).

Desai tata letak tangki septic dan bidang resapan yang sesuai dengan soal dan persyaratan di tabel 3.8, sbb :

SOAL LATIHAN

1. Klasifikasi jenis air buangan adalah

a. Jenis air kotor, air bekas, air hujan, air khusus, air dari dapur

b. Jenis air kotor, air hujan, air khusus

c. Jenis air campuran, air bekas dan kotor

d. Jenis air hujan, air lemak, air bekas mandi, air kotor

Page 135: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 132

2. Apa yang dimaksud dengan sistem pembuangan black water

a. sistem pembuangan untuk air buangan yang berasal dari kloset, urinal, bidet, dan air buangan yang mengandung kotoran manusia dari alat plambing lainnya ( black water ).

b. Sistem pembuangan dari alat plambing yang mengandung kotoran manusia dan bekas air mandi

c. sistem pembuangan untuk air buangan yang berasal dari bathtub, wastafel, sink dapur

d. Sitem pembuangan air kotor dan bekas

3. Apa yang dimaksud dengan sistem pembuangan grey water

a. sistem pembuangan untuk air buangan yang berasal dari kloset, urinal, bidet, dan air buangan yang mengandung kotoran manusia dari alat plambing lainnya ( black water ).

b. Sistem pembuangan dari alat plambing yang mengandung kotoran manusia dan bekas air mandi

c. sistem pembuangan untuk air buangan yang berasal dari bathtub, wastafel, sink dapur

d. Sistem pembuangan air kotor dan bekas

4. Standar Kemiringan pipa pembuangan horizontal yang diijinkan adalah

a. Ø 75mm atau kurang kemiringan minimum 1/50, sedangkan Ø 100mm atau kurang kemiringan minimum 1/100

b. Ø 75mm atau kurang kemiringan minimum 1/25, sedangkan Ø 100mm atau kurang kemiringan minimum 1/50

c. Ø 75mm atau kurang kemiringan minimum 1/100, sedangkan Ø 100mm atau kurang kemiringan minimum 1/150

d. Ø 75mm atau kurang kemiringan minimum 1/75, sedangkan Ø 100mm atau kurang kemiringan minimum 1/125

5. Klasifikasi cara pengaliran air buangan adalah

a. Sistem pembuangan air campuran, terpisah, tak langsung

b. Sistem gravitasi dan bertekan

c. Sistem pembuangan gedung, di luar gedung/roil kota

d. Sistem pembuangan campuran, terpisah, tak langsung dan grafitasi

6. Gambar manakah yang paling benar

Page 136: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 133

a. c.

b. d.

7. Apa yang di maksud dengan alat-alat plambing pembuangan:

a. Pipa-pipa pembuangan, pipa ven

b. Bak control, bak penangkap lemak, bak perangkap

c. bathtub, wastafel, bak-bak cuci piring, cuci pakaian, kloset, urinal, bidet

d. Bak penampungan dan tangki septic

8. Sistem pembuangan air kotor dengan tangki septik dapat diresapakan dengan:

a. Tangki septik dengan sumur resapan dan bidang resapan

b. Tangki septik dengan saluran ke roil kota

c. Tangki septik dengan sumur resapan dan roil kota

d. Tangki septic dengan perangkap lemak, perangkap pasir

9. Syarat penangkap (interceptor) yang baik adalah sebagai berikut, kecuali:

a. Penangkap yang sesuai harus dipasang sedekat mungkin dengan alat plambing yang dilayaninya, dengan maksud agar pipa pembuangan yang mungkin mengalami gangguan sependek mungkin.

b. Konstruksinya harus mudah dibersihkan, dilengkapi dengan tutup yang mudah dibuka dan letak dari penangkap dalam ruang sedemikian rupa sehingga sampah dari penangkap mudah dibuang keluar ruang.

c. Konstruksi penangkap harus mampu secara efektif memisahkan minyak, lemak dan sebagainya dari air buangan.Konstruksi penangkap umumnya juga merupakan ‘perangkap’, karena itu bila telah dipasang penangkap dilarang memasang perangkap, sebab dapat terjadi ‘perangkap ganda’.

d. Penangkap lemak maksimal jaraknya adalah 3 meter dan harus sesering mungkin untuk pemeriksaan agar jika terjadi penyumbatan dan banyak kotoran dapat mudah untuk dibersihkan.

10. Dalam perencanaan bangunan tinggi sistem pembuangan black water dan grey water

Page 137: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Kotor Dalam Bangunan 134

yang paling sesuai adalah

a. Di tampung di tangki septik kemudian di alirkan ke roil kota

b. Di tampung di tangki septik kemudian di resapkan

c. Diolah di STP

d. Ditampung di tangki septik kemudian di alirkan ke STP

Page 138: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 131

1.

Page 139: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 135

1. Air Hujan

Hujan adalah peristiwa alam dan merupakan siklus hidrologi yang merupakan bagian dari system ekologi. Hujan turun ke lingkungan binaan manusia yang di penuhi oleh gedung, jalan, tempat parkir, taman dan mencari jalan ketujuannya secara alami,sebagian lagi mengalir di permukaan mencari daerah yang lebih rendah, ke sungai, danau, ke laut atau menggenangi daerah dataran rendah.

Gambar 4.1. Siklus hidrologi

Air hujan yang turun ke bangunan, bila tidak di kumpulkan dan dialirkan dengan baik, akan mengalir dari atap, meresap dan merusakan dinding dan jendela, bocor ke dalam bangunan, membasahi orang di pintu masuk bangunan, mengerosi tanah di sekitar pondasi, meresap ke dinding basement bahkan dapat mengubah topografi lansekap suatu daerah.

Dengan demikian, masalah utama dari air hujan adalah :a. Mengalirkan air hujan yang tidak di inginkan yaitu air hujan di atap, air

permukaan dan air dalam tanah agar menjauh dari bangunan.b. Mengalirkan air permukaan dan air dalam tanah keluar dair tapak, ke

pembuangan umum agar tidak terjadi genangan atau banjir.c. Mengendalikan aliran air hujan agar tidak terjadi erosi atau perubahan

permukaan tanah.

Page 140: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 136

2. Pengendalian Air Hujan di bangunan

Air hujan datang ke bangunan pada atap, balkon atau ruang terbuka lainnya. Pada atap datar air di kumpulkan ke beberapa titik pembuangan dengan membuat kemiringan atap paling tidak 1%. Pada titik pembuangan / turun di pasangkan saringan (roof drain) agar kotoran tidak masuk ke talang vertikal (leader) yang dapat di letakaan di luar atau di dalam bangunan. Air hujan yang masuk ke balkon juga di saring (floor drain) terlebih dahulu dan di alirkan ke pipa pembuangan utama atau bak penampung air hujan di bawah lantai, kemudian di buang ke saluran air hujan umum.

Gambar 4.2. Roof & floor drain

Pada atap miring biasanya di perlukan talang horisontal (gutter) kemudian di alirkan ke talang vertikal kebawah ke saluran pembuangan atau di resapkan ke dalam tanah. Metode meresapkan air hujan dari atap umunya di lakukan hanya pada bangunan kecil, atau pada bangunan yang umum (riol). Untuk bangunan yang lebih besar, umumnya di buatkan kolam penampungan pada tapak yang jauh dari bangunan. Bila kapasitas air hujan yang di resapkan kecil, upaya yang di lakukan untukmenjauhkan dan meresapkan air hujan adalah :

a. Dengan membuat rabat di sekeliling bangunan air hujan mengalir menjauh dari bangunan. Namun cara ini harus di dukung dengan pengolahan kemiringan tanah di sekitar bangunan (grading) agar tidak terjadi genangan di sekitar rabat.

b. Membuat sumur resapan langsung di bawaqh talang tegak. Cara ini hanya berhasil bila kemampuan resap tanah (faktor perkolasi) tinggi.

c. Membuang air hujan melaui pipa-pipa ke sumur resapan.

Roof drain / tutup talang

Floor drain

Page 141: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 137

Gambar 4.3. Komponen untuk meresapkan dan menjauhkan aliran air hujan dari bangunan.

2.1 Pembuangan Air Hujan dari AtapPembuangan air hujan dari atap perlu memenuhi syarat-ayarat sebagai berikut :1. Membuang air hujan dari atap secepat mungkin ke saluran pembuangan kota atau

ke tanah (bila daya resap tanah memungkinkan)

2. Pipa talang horisontal maupun vertikal harus cukup besar agar dapat menyalurkan dan sesuai kapasitas air dan luas dari atap dengan cepat. Penggunaan gutter untuk atap miring, di samping harus cukup kapasitasnya, sebab makin besar sudut atapnya maka makin cepat pula alairan airnya.

3. Pipa-pipa pembuangan tidak mudah tersumbat. Untuk itu perlu di pasangakan saringan-saringan (roff drain, floor drain) agar kotoran ltidak masuk ke dalam pipa.

4. Pipa air hujan horisontal di dalam bagunan harus mudah di bersihkan, karena itu di pasangkan clean out

5. Aliran dalam pipa pembuangan tidak boleh terhambat, karena itu di hindari sebanyak mungkin pembelokan pipa, bahkan penggunaan sambungan pipa dengan knee yang bersudut 900 tidak di anjurkan, kecuali di pasangakan kotak penampung/kontrol dalam belokan itu.

Page 142: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 138

6. Bila di rencanakan air hujan akan di tampung terlebih dahulu di lantai basement, baru di buang, maka perlu di sediakan bak penampung air hujan yang terpisah dari air kotor yang lain dan di lenka;pi pompa penguras sentrifugal. Untuk itu diberlakukan persyaratan bak penampung dan pompa penguras ( lihat bab.3; Air Kotor; 3.7.1 dan 3.7.2.) pada proyek yang mempunyai banyak basement, agar ekonomis bak penampungan semacam ini sering di satukan dengan penampungan air rembesan (air tanah yang merembes melalui dinding basement), air buangan AC, atau mesin lain yang menghasilkan air, air pengurasan tangki iar bersi, dan di sebut sebagai sump pit ; pompanya di sebut sump pump.

7. Nilai unit beban alat plamping untuk sump pump dengan kemampuan mengalirkan air 3,8 liter / menit adalah 2, sedangkan floor drain berdiameter 40 mm – 0,5; 50mm – 1 dan 75 – 2.

2.2 Ukuran PipaUkuran pipa air hujan dari atap tergantung pada jumlah dan kecepatan air yang di alirkan dari atap. Jumlah air dari atap tergantung pada luas atap dan curah hujan rata-rata setempat.

2.2.1 Mencari Ukuran Pipa Berdasarkan Data Curah HujanHubungan antara luas atap (A), curah hujan (R) dan banyaknya air hujan yang di

pindahkan (Q), di nyatakan dengan rumus1 berikut :

)/(96

)()(

2

hourinchRftA

gpmQ

Berdasarkan rumus tersebut, sekali curah huja rata-rata suatu daerah di keathui, maka di cari nilai Q. Kemudian, dengan bantuan tabel 4.1 dan tebel 4.2, nilai Q di konversi ke ukuran talang tegak (leader) atau talang tegak (leader) atau talang tepi atap miring (gutter).

Tabel, 4.1 Konversi Q ke diameter talang tepi (gutter)

Diameter gutter(inches)

Q maksimum(gpm)

3 74 155 266 407 578 83

10 150 1 Konversi factor unit imperial kemetrik untuk rumus ini adalah

1 gallon = 3,785 liter1 ft2 = 0.0929 m2

1 inch = 25.4 mm

Page 143: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 139

Tabel, 4.2 Konversi Q ke diameter talang tegakl (leader)

Diameter gutter(inches)

Q maksimum(gpm)

3 232 4½ 41

3 674 1445 2616 4248 913

2.2.2 Mencari Ukuran Pipa Bila Curah Hujan Tidak DiketahuiBila curah hujan rata-rata setem[pat tidak di ketahui, maka nilai curah hujan tersebut di asumsikan 100mm /jam dan di gunakan 3 tabel langsung menghubungkan antara luas atap dengan ukuran-ukuran pipa leader,atorm drain dan gutter yang di perlukan.

Tabel 4.3. Ukuran talang vertikal air hujan (leader, conduktor)Diameter talang tegak

/ vertikalLuas

PenampungLuas atap maksimum

Yang di layaniInches mm cm2 m2

22 ½ 34568

5062,575

100125150200

20314479

123177314

6511719841578012152610

Catatan: bila talang tidak terbentuk pipa lingkaran, di gunakan luas penampung.

Tabel 4.4. Ukuran pipa pembungan horisontal utama (strom drain)

Diameter pipa Luas atap yang di layani pada berbagai kemiringan talang horisontal (gutter) (m2)

Inches mm 1/100 (1%) 1/50 (2%) 1/25 (4%)34568

101215

75100125150200250300375

741703004801035186330005355

105240425680

1470267042307560

148340600965200037256000

10710

Page 144: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 140

Tabel 4.5. Ukuran talang tepi horisontal semu sirkuler (gutter)

Diameter gutterLuas penampung

gutter

Luas atap maksimum yang dapat dilayani pada berbagai kemiringan

talang orisontal (gutter) (m2)

Inches mm Cm2 1/200 (0,5%)

1/50(1%)

1/25(4%)

345678

10

75100125150175200250

22396188

12015724

15325686

124180324

3165113173248358648

4392160250350504900

Catatan : bila gutter tidak terbentuk semi sirkuler, maka digunakan luas penampang

2.2.3 Contoh Penghitungan Ukuran PipaContoh 1. Menghitung leader dan strorm drain

Dari tabel 4.3 : Untuk atap yang tertinggi, dengan luas atap 540 m2 di gunakan leader ukuran 5”

sedangkan untuk atap yang lebih rendah masing-masing 5” juga untuk luas 7202

Bila di perhatikan, sebenarnya, untuk roof drain dengan luas 360 m2 dan 720m2, cukup digunakan diameter 4. namun demi definisi dan kemudaan kerja maka pipa 4” tersebut di ganti menjadi 5”.

Page 145: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 141

Dengan cara yang sama di temukan ukuran pipa 2” untuk 3 bh balkon, yang masing-masing mempunyai floor drain untuk 12 m2

Dari tabel 4.4 : Berurut sesuai dengan arah aliran, mulai dari courtyrard (360 m2) di temukan pipa

5” untuk kemiringan pipa 2%. Kapasitas pipa sesudah memulai pertemuan dengan pipa turun dari balkon harus

dapat melayani 360 + 36 = 396 m2, masih cukup di layani dengan pipa 5”. Dengan cara yang serupa di hitung kekiri dan di termukan pipa strom drain

tereakhir harus berukuran 10” 250 mm).

Contoh 2 : Menghitung gutter dan leader

Pada atap pelana atas, akan di buat 4 talang tuurn, sebab dengan panjang 20 m bila hanya di buat satu buah jaraknya terlalu jauh, konsekuensinya guttyer kwmiringan.

Tiap satu talang turun, melayani 10x10 = 100 m2. berdasar tabel 3, ukuran tiap talang turun adalah 2 ½” dengan luas penampang 31m2

Gutter untuk tiap talang turun melayani 100m2. berdsasar tabel 4.5, di butuhkan diameter guttersemu sirkuler sebesar 7” ( dengan kemiringan 0,5%) atau gutter berpenampung 120m2

Bila gutter dan leader tersebut di desain tidak menggunakan pipa bundar, maka hasilnya adalah sebagai berikut;

Page 146: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 142

3. Drainase tapak

Setiap pembangunan di tapak biasanya mengubah pola drainase asal yang ada dan menambah jumlah aliran air hujan akibat tertutupnya tanah oleh bangunan atau perkerasan. Dalam perancangan tapak, arsitek harus memperhatikan pola drainase ekisting yang ada di tapak dan memperhitungkan bertambahnya jumlah aliran air hujan (run off) yang tak dapat meresap dalam tanah dan menciptakan drainase positip; yaitu mengarahkan aliran air hujan menjauhi bangunan atau daerah-daerah kegiatan (parkir, jalan) agar tidak terjadi banjir , erosi atau genangan air.

Pada prinsipnya, ada dua tipe sistim drainase, yaitu drainase permukaan dan drainase bawah tanah. Namun pada prakteknya, kedua sistim drainase tersebut sering digunakan/dikombinasikan secara bersama-sama.

3. 1 Drainase permukaanDrainase permukaan meliputi sheet flow,pembuatan saluran-saluran terbuka untuk jalan dan tempat parkir; pembuatan alur/lekuk tanah dan bukit kecil yang merupakan bagian rancangan lanskap tapak.

3.1.1 Sheet flow dan alat perlengkapannyaSheet flow, dimaksudkan sebagai drainase yang terjadi karena adanya kemiringan permukaan tanah, perkerasan atau taman. Aliran air semacam ini biasanya diarahkan dan ditampung oleh saluran terbuka atau bak penampung; kemudian diteruskan ke saluran air hujan lingkungan atau tempat pembuangan lainnya (sungai, danau, kolam buatan dsb).

Page 147: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 143

Richard Untermann , mengemukakan bahwa terdapat 3 bentuk dasar pengolahan topografi (grading) sehubungan dengan pengaliran bentuk sheet flow ini yaitu; bidang miring (sloping plane), lembah (valley) dan bentuk corong (funnel).

Bentuk bidang miring (sloping plane) merupakan bentuk yang paling sering digunakan karena mempunyai varian kemungkinan yang tak terbatas, disamping itu bidang miring yang dibuat dapat merupakan bidang convex atau concaf .

Bila hanya sistim sloping plane ini saja yang diterapkan dalam suatu tapak, maka perlu disadari bahwa air hujan dan perlu dialirkan keluar melalui saluran terbuka. Kalau tidak, maka air hujan akan mengalir ke tapak tetangga dan menimbulkan masalah.

Gambar 4.4. Sloping Plane

Gambar 4.5. Valley

Richard Untermann, Grade Easy, Washington D.C; Landscape Architecture Foundation, 1973, pp.52-53

Page 148: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 144

Pada kasus dimana dikehendaki air hujan tetap mengumpul didalam tapak, maka salah satu teknik yang digunakan adalah memakai bentuk lembah ( valley) untuk mengontrol aliran air hujan. Dasar dari lembah ini dapat dibentuk dari hanya sekedar lekukan tanah berumput (swales) berkemiringan 1% sampai pembuatan saluran/selokan dengan atau tanpa perkerasan atau dengan sengaja dibuat suatu aliran sungai kecil (creek) sebagai elemen lanskap.

Gambar 4.6. Funnel

Bentuk corong (funnel), sebenarnya merupakanpenggabungan dari dua bentuk sebelumnya. Namun bentuk ini mempunyai satu karakteristik yang tidak dipunyai oleh sloping plane ataupun valley, yaitu diperlukan adanya corong pengumpul (area drain) serta jaringan pipa bawah tanah untuk mengalirkan air hujan keluar tapak.

Berkaitan dengan sheet flow, maka dikenal 3 bentuk alat pengumpul air hujan ( lihat gambar di halaman 146) :

a. Area drain, yang berfungsi seperti corong, menangkap air dari suatu daerah berukuran tertentu dan sekedar mengarahkan air dari permukaan langsung kedalam pipa. Kelemahannya, adalah dalam jangka waktu yang panjang sering kali pipa tersumbat oleh kotoran atau tanah yang terbawa oleh aliran air hujan. Kelemahan lainnya adalah bahwa elevasi dari area drain tidak fleksibel, harus merupakan titik terendah dari semua bidang miring aliran.

b. Bak pengumpul; fungsinya serupa dengan area drain, menangkap air permukaan suatu daerah tertentu. Tetapi, dikembangkan lebih lanjut dengan fungsi tambahan, yaitu fungsi penangkap tanah dan kotoran. Karena adanya fungsi ganda inilah, maka bak pengumpul ini menjadi sangat disukai dan digunakan.

Page 149: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 145

c. Pipa pengumpul, atau pengumpul berbentuk linier. Bentuk ini mempunyai kelebihan, yaitu elevasinya yang fleksibel sehingga mudah mengikuti berbagai ketinggian tanah, jalan, atau tempat parkir.

Gambar 4.7. Alat pengumpul air hujan

Area drain

Bak pengumpul

Pipa pengumpul

Page 150: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 146

Bak pengumpul air hujan berukuran besar ( gambar 4.7), sangat diperlukan pada lanskap yang memakai perkerasan dalam ukuran yang luas ( mis. plaza). Sebab permukaan perkerasan yang luas disamping memerlukan pengeringan yang cepat, juga mempunyai koefisien aliran air yang tinggi sehingga seringkali bak kontrol biasa atau saluran-saluran terbuka kurang mampu menampungnya.Pada contoh aplikasi pada suatu perkerasan berukuran 100 ft x 200 ft, dengan menerapkan satu, dua dan empat buah bak penampung untuk luas yang sama, terlihat korelasi bahwa makin banyak bak penampung yang disediakan maka makin datar permukaan perkerasan tersebut. (gambar 4.9). Sebab perbedaan elevasi untuk satu bak penampung mencapai 1,1 ft.; untuk dua bak 0,75 ft dan untuk 4 bak dibutuhkan hanya 0,55 ft.

Gambar 4.8. Bak penampung air hujan

Page 151: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 147

Gambar 4.9. Korelasi jumlah bak penampung dengan kedataran permukaan perkerasan

Alat perlengkapan penting selain alat pengumpul air hujan adalah bak perneriksa atau bak kontrol.

Page 152: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 148

Bak kontrol air hujan yang digunakan sebagai alat pemeriksaan serta pernbersihan saluran drainase perlu ditempatkan pada :a. perubahan saluran pipab. perubahan ukuran pipa saluranc. perubahan kerniringan pipa salurand. pertemuan dua atau lebih pipa salurane. jarak /interval antar bak kontrol berkisar antara 100 sampai 150 m

Gambar 4.10. Contoh Bak Kontrol

3.1.2 Kemiringan elemen luar bangunan

Agar air hujan dapat mengalir, maka dibutuhkan kemiringan-kemiringan tertentu pada elemen luar bangunan. Bila kemiringan terlalu curam, maka terjadi erosi, tetapi sebaliknya bila kemiringannya kurang maka terjadi genangan bahkan banjir dalam

Gambar disebelah, merupakan contoh konstruksi dari bak kontrol. yang umurn dipakai. Pada kedua contoh tersebut terlihat bahwa bak kontrol tetap ditanam sekitar 30 cm dibawah muka tanah, sebab bila tidak ditanam, bak kontrol dalarn jumlah yang banyak akan mengganggu penataan lanskap. Konsekwensinya, di permukaan tanah diatas tiap bak kontrol perlu dipasang suatu penanda. Contoh yang atas, adalah bak kontrol untuk percabangan pipa atau perbedaan elevasi pipa, tidak mernpunyai fungsi pe-ngendapan tanah atau kotoran.Contoh yang bawah adalah bak control yang mempunyai fungsipengendapan kotoran.

Page 153: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 149

berbagai skala kapasitas. Daftar kemiringan elemen luar bangunan yang dapat dijadikan dasar perencanaan adalah sebagai berikut :

Tabel 6. Kemiringan elemen luar bangunan

Jenis elemen luar bangunan maksimum minimumJalan kendaraanTempat parkirDaerah service Jalan setapak utama menuju bangunanTeras/hall masuk bangunanJalan setapak kolektorRampTeras yang digunakan untuk duduk-dudukLapangan rumput untuk rekreasiAlur air hujan

8%5%5%4%2%8%10%2%3%10%

0,5%0,5%0,5%1,0%1,0%1,0%1,0%1,0%2,0%2,0%

Lereng dengan rumput yang dipotong lereng dengan rumput yang tidak dipotong

slope 3:1slope 2:1

3.1.3 ukuran pipa pembuangan air hujan

rancangan system air hujan pada lahan yang luas didasarkan pada jumlah curah hujan yang harus disalurkan keluar tapak dalam waktu tertentu.

Aliran air hujan dipengaruhi oleh dua factor :

1. intensitas hujan (tingkat kederasan), jumlah hujan (misalnya perbulan), dan lamanya hujan (berapa jam rata rata perhari) data data hujan ini dapat diminta dari direktorat meteorology dan geofisika.

2. karakteristik daerah yang dilalui air hujan ; porositas tanah, kemiringan lereng dan tanaman penutup tanah.

aliran air hujan dipermukaan tanah dapat ditentukan dengan menghitung volume air yang tersalur dari suatu daerah aliran air yang diukur dalam liter atau m3 per detik2. untuk menghitung jumlah aliran air hujan digunakan rumus :

2 1 cu.ft = 0.0283 m3

1 acre = 4047 m2

Page 154: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 150

Q = C.I.A Q = jumlah aliran air hujan pada suatu daerah (cu.ft/detik)C = koofisien aliran air hujan (presentase aliran air yang mengalir)I = intensitas curah hujan untuk suatu wilayah (cu.ft/hour)A = luas daerah (acre)

nilai koofisien C yang digunakan dalam rumus, untuk berbagai jenis karakteristik permukaan adalah sebagai berikut :

Table 4.7. Koofisien C untuk berbagai jenis permukaan

Jenis permukaan minimum optimum MaksimumAtapperkerasan beton/aspaljalan macadamjalan tanpa perkerasankerikitanah pertanianhalaman/derah berumputhutan/daerah berpohon lebat

0,900,900,700,300,300,300,100,10

0,950,950,800,600,700,600,350,16

1,00 1,00

0,900,750,700,820,600,60

besaran Q yang diperoleh dapat digunakan untuk menentukan besarnya pipa pipa pembuangan air hujan ditapak dengan bantuan manning formula chart yang dilampirkan berikut ini :

Page 155: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 151

Gambar 4.11 Diagram Manning, untuk menghitung besarnya pipa pembuangan air hujan di tapak

Page 156: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 152

Contoh perhitungan dengan formula manning :

Catatan : karena diagram manning mengguunakan satuan dengan feet, inches dst maka dalam contoh ini juga digunakan satuan yang serupa.

Dalam soal ini, anggapan yang digunakan adalah :1. lahan tertutup rumput, dengan koofisien C optimum = 0,352. pipa yang digunakan mempunyai kemiringan ),1%3. intensitas air hujan periode 10 tahunan untuk wilayah ini = 2,4 cu.ft/hour

luas daerah A = 2 acres : dialirkan ketirik aQ =C.I.A = 0,35 x 2,4 x 2 -4 Q = 1,68 cu.ft/detdengan kemiringan 0,1 % dalarn diagram ditemukan pipa diameter 14" untuk jalur I seksi a-b

Luas daerah B = 2 acres, dialirkan ke titik b; Q = 1,68 cu.ft/detQ pada titik b melayani luas A + B Q = 1,68 + 1,68 = 3,36 cu.ft/detdengan kemiringan 0,1 % dalam diagram.ditemukan pipa d iameter 18" untuk jalur 2 ; seksi b-d.

Luas daerah C = 2 acres; dialirkan ke titik d; Q pada titik d melayani luas A + B + C = 5,04. cu.ft/det Tetapi juga menampung luas D dan E (harus dihitung dulu)

Luas daerah E = 1 acre; dialirkan ke titik c;Q=CLA = 0,35 x 2,4 x 1 Q = 0,84 cu.ft/detdengan kemiringan 0, 1 %, ditemukan pipa diameter 12" untuk jalur 3 seksi c-d

Luas daerah D = 2 acres Q = 1,68 cu.ft/det dialirkan ke titik d. ; Q pada titik dmelayani luas D + E = 1,68 + 0,84 = 2,52 cu.ft/detQ totat pada titik d = 5,04 + 2,52 = 7,56 cu.ft/detdengan kemiringan 0, 1 %, ditemukan pipa. diameter 24", untuk jalur 4 seksi d-e

Luas daerah F = 1 acre; dialirikan ke titik e; Q = 0,84 cu.ft/det Q pada. titik e 7,56 + 0,84 = 8,4; cu.ft/det diameter pipa. 26" , untuk jalur 5 yangmerupakan jalur terakhir seksi e-f

3.2 Drainase bawah tanah

Drainase bawah tanah, merupakan kebalikan dari pipa resapan air kotor. Bila pipa resapan mengalirkan air dan mengeluarkan air untuk diresapkan kedalam tanah, pipa

Page 157: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 153

drainase bawah tanah justru mengambil air hujan yang meresap/mengalir ditanah untuk dialirkan ketempat lain.

Tujuan drainase bawah tanah adalah :

a. Mengumpulkan dan membuang air hujan yang jatuh di atap, jalan, ruang terbuka kedalam pipa bawah tanah yang berfungsi sebagai drainase utama lingkungan.

b. Melindungi tanah di 'kaki' bangunan dengan pengadaan footing drain , menurunkan permukaan air tanah dan mengurangi tekanan hidrostatik pa0a dinding-dinding dibawah.tanah (basement- kolam. renang dsb.)

c. Pembuangan aliran air permukaan yang dengan sengaja tidak dialirkan di permukaan ( mis. lapangan golf, sepak bola, tenis dsb) dengan pipa resapan.

3.2.1 Drainase lingkungan

Untuk suatu lingkungan atau kompleks bangunan yang luas, bila tidak tersedia saluran umum, maka saluran utama pembuangan lingkungan dibuang ke sungai terdekat atau danau/kolam buatan di dalam atau diluar tapak

Gambar 4.12. Sistim pembuangan air bujan dari lingkunganKeterangan :a) saluran tepi jalan b) saluran dari rumah-rumah c) saluran dari perkerasan lingkungan d) pembuangan ke sungai/danau buatan e) pagar pengaman (terhadap anak-anak, pembuangan sampah).

3.2.2 Foolting Drain

Air hujan yang jatuh di tapak, meresap dan menyatu dengan air tanah. Aliran air tanah dapat meng-erosi tanah ‘kaki’ bangunan, menjadi penyabab berkurangnya kemampuan daya dukung tanah sehingga timbul resiko terjadinya perbedaan penurunan bangunan (settlement). Disamping itu, tekanan hidrostatik air tanah pada dinding basement dapat menjadi penyabab terjadinya kebocoran.

Page 158: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 154

Sebagai pencegah hal tersebut diatas dan juga untuk menurunkan tinggi permukaan air tanah disekeliling pondasi atau basement, dibuat pipa perforasi untuk mengalirkan air tanah (flooting drain) ketempat lain.

Penampungan air tanah dengan pipa menimbulkan masalah lain, yaitu kecepatan aliran dalam pipa lebih tinggi dibandingkan kecepatan air tanah normal, terlebih lagi pada musim penghujan dimana air hujan yang meresap dalam tanah mengalami peningkatan dan muka air tanah cenderung lebih tinggi. Akibatnya, di tempat ujung keluar pipa pembuangan akan rentan terhadap erosi dan sedimentasi.Masalah ini diatasi dengan pembuatan konstruksi khusus yang disebut head will, yang mempunyai dinding dan landasan krikil untuk pencegah erosi.

Gambar 4.13. Pencegahan erosi pada pondasi (footing drain)Keterangan :a) posisi bangunan b)talang turun dari atap c) pipa pencegah erosi footing draind) pipa pembuangan e) peresapan melalui saringan kerikil dan head wall.

Page 159: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 155

Gambar 4.14. Axonometri dari footing drain.

Prinsip memindahkan aliran air tanah kepipa dengan maksud mengurangi tekanan air serta menurunkan tinggi muka air seperti diatas, juga diterapkan pada konstruksi dinding- dinding penahan tanah (retaining wall seperti contoh berikut :

Gambar 4.15. Drainase untuk dinding penahan tanah.

Page 160: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 156

3.2.3 Drainase untuk bidang khusus.

Pada situasi khusus misalnya pembuatan lapangan sepak bola atau lapangan tennis, lapangan golf (saluran air ingin tidak terlihat), metoda sheet flow tidak dapat diterapkan. Solosinya adalah membuat pipa-pia resap dibawah tanah Drainase bawah tanah dapat dicapai dengan membuat saluran horizontal di dalam lapisan tanah;menggunakan pipa tanah yang berlubang-lubang setengan dibagian atas atau pipa dengan sambungan terbuka. Agar tanah atau pasir tidak dapat masuk kedalam pipa, maka bagian pipa yang terbuka /berlunag dilapisi ijuk,

kemudian kerikil yang berfungsi sebagai penyaring. (lihat Contoh a). Kemudian air dialirkan ketempat lain kedalam kolam buatan, sungai dan sebagainya. Namun bila kondisi tanah didaerah pembuangan memungkinkan (mempunyai daya resap cukup) sering dibuat pipa resap dengan lubang perforasi dibawah (lihat gambar b).

Aliran air kedalam saluran drainase bawah tanah, dipengaruhi oleh daya rembes tanah, kedalam saluran dibawah permukaan, ukuran dan banyaknya lubang pada pipa, jarak antar saluran serta diameter saluran.

Banyak drainase bawah tanah khusus seperti diatas, menurut bentuknya dapat dikelompokan dalam beberapa tipe sebagai berikut :

a. Alamiah ; digunakan bila kapasitas air hujan yang akan dialirkan hanya sedikit, dan ditempat-tempat tertentu saja

Page 161: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 157

b. Duri ikan (herring bone); digunakan untuk daerah lahan berbentuk cekung dengan lereng dikedua sisinya; atau pada bidang datar dengan pengaturan kemiringan pipa di dalam tanahnya. Pada sistim ini tidak diperbolehkan adanya sudut lebih dari 450

c. Pararel ; dimana aliran air masuk pada pipa-pipa cabang yang pararel kemudian diteruskan pada pipa induk yang berpotongan pada sudut kurang dari 90O

3.3 Contoh aplikasi drainase tapak

Gambar 4.16. Drainase permukaan

Page 162: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 158

Gambar 4.17. Drainase bawah tanah

Gambar 4.18. Drainase bawah tanah dengan kolam tampung

Page 163: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pembuangan Air Hujan Dalam Bangunan 159

Gambar 4.19. Drainase kombinasi permukaan dan bawah tanah

Gambar 4.20. Perspektif drainase kombinasi

Page 164: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 159

Page 165: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 160

1. Umum

1.1 Masalah kebakaran di perkotaan

1. Makin sedikitnya ruang terbuka yang dapat berfungsi sebagai barrier /penghalang menjalarnya kebakaran ataupun sebagai tempat operasi pemadaman kebakaran

2. Makin sulitnya di jumpai sumber-sumber air untuk keperluan pemadaman

3. Jumlah dan sebaran hidran kota yang masih belum memadai

4. Kondisi dan peralatan aparat pemadam kebakaran yang belum lengkap, terutama untuk menghadapi kebakaran bangunan tinggi /bertingkat banyak

5. Makin sulit mendekati lokasi kebakaran, oleh sebab kepadatan kompleksitas bagunan, serta kemacetan lalu lintas

6. Perubahan yang cepat pada fungsi bangunan /ruang, yang tidak di imbangi dengan penyesuaian sarana penanggulangan kebakaran; resiko terjadinya kebakaran meningkat.

7. Banyak gedung yang tidak memiliki sarana pengaman kebakaran yang lengkap (deteksi, alarm, sprinkler, hidran)

8. Banyak gedung yang kurang memperhatikan pentingnya sarana jalan keluar yang aman. Bila ada, sebagian besar sering kurang terpelihara atau telah berubah fungsi.

9. Aspek pemeliharaan dan pemeriksaan keandalan, misalnya terhadap instalasi listrik, genset, tabung pemadam api dll, yang berusia lebih dan 5 tahun, masih kurang diperhatikan

10. Latihan kebakaran sebagai kegiatan rutin masih jarang, bahkan sering tidak dilakukan.

Kesimpulan :

Setiap gedung harus bersifat mandiri dalam mengupayakan pengamanan terhádap bahaya kebakaran. Artinya, peranan, tanggung jawab dan perhatian para arsitek pada penanggulangan kebakaran gedung menjadi penting.

Page 166: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 161

1.2 Peraturan dan perundangan yang berlaku

1. Kep. Menteri P.U no.02/KPTS/ 1985;

Mengenai Ketentuan-ketentuan Teknis Pencegahan dan Penanggulangan Kebakaran pada Bangunan Gedung.

2. Khusus untuk DKI, terdapat perda no.3/1975

Mengenal Pencegahan dan Penanggulangan Kebakaran di Wilayah DKIJakarta. Saat ini Perda tersebut sedang direvisi meskipun tetap berlaku.

3. Ketentuan—ketentuan lain.

Sejak 1987, telah terbit standar-standar mengenal Proteksi Kebakaran untuk Bangunan (11 buku). Disamping itu terdapat ketentuan/standar dan NFPA, ASTM SFPE, JIS, DIN, BS dan AS, yang dapat dipakal sebagai acuan untuk hal-hal yang belum diatur/ distandarkan dalam peraturan yang ada di Indonesia, dengan syarat ketentuan-ketentuan tersebut dicantumkan dalam dokumen ‘Persyaratan Pelaksanaan dan Uraian Pekerjaan’ sebagai bagian dan dokumen kontrak pelaksanaan.

1.3 Teori api

Api adalah reaksi kimia eksotermik yang disertai timbulnya panas/kalor, cahaya (nyala), asap dan gas dan bahan yang terbakar. Proses ini dinamakan reaksi pembakaran.

Reaksi pembakaran di klasifikasi sebagai:

1. Reaksi pembakaran kimia, termasuk senyawa organik (senyawa yang mengandung gugus karbon).

Senyawa karbon + 02 ↔ CO2 + H2O + panas + cahaya.

2. Reaksi sederhana /sempurna; misalnya antara gas methan (CH4)dengan oksigen, menghasilkan air dan karbon dioksida. Reaksi inidisebut sempurna karena satu molekul methan memerlukan 2 molekul oksigen (tercukupi)

CH4 + 02 ↔ CO2 + 2H2O + panas + cahaya.

3. Reaksi pembakaran tidak sempurna karena oksigen tidak tercukupi;

Senyawa karbon + 02 ↔ CO2 +CO + C + H2O + panas + cahaya.

Terjadinya api memerlukan tiga (3) unsur pembentuk api yaitu bahan bakar, panas mula dan oksigen.

1. Bahan bakar, adalah materi / zat yang seluruhnya atau sebagian mengalamiperubahan kimia dan fisika bila terbakar. Dapat berbentuk padat, cair atau gas.

Page 167: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 162

2. Panas mula, merupakan tingkatan energi bahan untuk terbakar pada suhu bakamya, yakni suhu terendah saat bahan mulai terbakar. Disebut juga sebagai temperatur penyulutan (ignition temperature).

3. Oksigen, adalah unsur kimia pembakar (± 20% di udara).

Reaksi rantai pembakaran

Reaksi rantai menunjukkan suatu proses pembakaran yang berkesinambungan. Api yang timbul pada satu bagian bahan bakar akan memanaskan dan menaikkan suhu bakar pada bahan lainnya, sehingga menyebabkan seluruh bahan terbakar, atau mengakibatkan benda - benda disekitarnya turut terbakar.

1.4 Metoda umum pemadaman api

1. Pendinginan

Panas ditiadakan dengan pendinginan. Diperlukan suatu cara peniadaan panas yang lebih cepat dan pada panas yang ditimbulkan oleh api tersebut. Proses inimengabsorbsi kalor sehingga evolusi panas terganggu sehingga temperatur penyulutan tak tercapai; menghentikan timbulnya uap dan gas yang mudah terbakar. Bahan pendingin yang umum adalah air.

2. Pemindahan bahan bakar

Memindahkan bahan bakar dan api bukan saja sulit tetapi berbahaya, lebih mudah mengatasinya dalam desain sistimnya.

a. Tangki bahan bakar yang mudah menyala di letakkan terisolir dan dilindungi, bila sukar diisolasi, isi bahan bakar dapat dipompakan ke tangki kosong lain yang jauh dan terisolasi.

b. Penyediaan katup-katup penghenti aliran gas pada pipa - pipa gas yang mudah menyala.

c. Mencampur gas/uap bahan bakar dengan udara (pengenceran) sehingga konsentrasinya berada dibawah titik konsentrasi bakar minimum.

3. Pembatasan oksigen

a. Pemindahan/pemisahan oksigen dilakukan dengan cara menghalangi kontak dengan oksigen, misal dengan busa, pasir.

b. Pengenceran reaktan sedemikian rupa sehingga konsentrasinya berada dibawah titik nyala, misalnya dengan penyemprotan gas karbon dioksida pada api.

4. Penghentian reaksi rantai

Dilakukan dengan cara mengganggu radikal bebas pada reaksi rantai dengan menggunakan pemadam api jenis kimia kering (natrium bikarbonat, kalium bikarbonat, amonium sulfat) atau dengan gas halon. Gas halon bila terkena api

Page 168: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 163

menghasilkan radikal bebas gas halon (chlor, brom atau fluor), yang mengikat atom - atom bebas sehingga reaksi rantai terganggu.

1.5 Pola penyebaran api.

Peningkatan kebakaran dalam ruang mulai dan api kecil sampai keadaan menyala serentak (pada suhu ± 500 - 600°C) disebut sebagai tahapanflashover.

Kebakaran menjalar dengan cara konduksi, konveksi dan radiasi.

(lihat gambar di halaman 165,166 dan 167)

Gambar 5.1 Api menjalar dengan cara, konduksi, konveksi dan radiasi

Page 169: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 164

Gambar 5.2 . Tahapan terjadinya kebakaran

Asap & gas panas berkumpuldisekitar langit-langit

Api makin mémbesar, gas dan benda Iainnya mendekati suhu bakar.

Gas dan benda-benda yang dapat terbakar mencapal suhu bakar ; terbakar serentak sebagai flashover.

Page 170: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 165

Gambar 5.3. Penyebaran api dengan cara, konduksi, konveksi dan radiasi

1.6 Bahaya akibat produk kebakaran

1. Temperatur /suhu

Manusia tidak dapat bertahan terhadap panas tinggi meskipun hanya beberapa menit. Sebagai contoh; udara pada jarak 3 m dan nyala api dapat mencapai suhu 150°C atau 300°F; suhu yang tidak dapat di tahan manusia lebih dan 5 menit.

2. Asap kebakaran

penyebaran api secara konduksi melalui dinding

penyebaran api secara konveksi melalui ruang terbuka

ppenyebaran api secara radiasi kke bangunan yang berdekatan.

Page 171: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 166

Asap adalah produk pembakaran yang tidak sempurna dan suatu bahan; terdiri atas partikel - partikel gas dan uap serta unsur - unsur terurai yang dilepas oleh suatu bahan yang terbakar.

Semua bahan yang bersifat combustible, bila terbakar melepas karbon mono oksida (CO) dan karbon dioksida (C02) dalam jumlah besar. Selain itu, juga terlepas gas - gas beracun yang tergantung dan jenis bahan yang terbakar.

Karbon mono oksida bersifat racun, menjadi penyebab utama kematian pada peristiwa kebakaran. Bila CO terhirup pemafasan, dalam tubuh akan mengikat hemoglobin dan membentuk carboxyhemoglobin, akibatnya oksigen dalam darah berkurang. Kadar carboxyhemoglobin sebesar 65% menyebabkan kematian karena terhentinya pusat syaraf di otak yang mengatur fungsi jantung dan pemafasan. Jika manusia berada di lingkungan udara yang mengandung CO dengan konsentrasi 1 %, maka dalam waktu 5 menit akan pingsan, dan dalam waktu singkat berlanjut ke kematian.

Gas beracun produk pembakaran

Tabel 5.1 Gas beracun produk pembakaran

Bahan Gas/ uap racun yang timbul

Semua bahan combustible yang mengandung karbon

Karbon dioksida (C02) dan karbon mono oksida (CO)

Seluloid, polyurethane Nitrogen oksida (NO)

Wool, sutera, kulit, plastik yang mengandung nitrogen, plastik selulosa, rayon

Hydrogen Cyanida

Kayu, kertas Acrolein (CO3H4O)

Karet, thiokol Sulphur dioksida (SO2)

Polyvinyl chlorida, plastik retardant, plastik yang mengandung fluor

Asam-asam Halogen (HCl, HBr, HF)

Melamine, nilon, resin, urea formaldehyde Amonia (NH3)

Polystyrene Benzena (C6H6)

Phenol formaldehyde, kayu, polyester resin Aldehida

Busa polyurethane Isocyanat

Perlu diingat bahwa bahan-bahan interior bangunan modern, umumnya terbuat dan bahan sintetik, maka dapat dipastikan, akan cukup banyak asap/gas beracun dalam bangunan bila terjadi kebakaran . Disamping itu, banyaknya asap akan mengganggu penglihatan dan menimbulkan kepanikan.

2. Penataan Iingkungan untuk proteksi kebakaran

Dalam menata lingkungan agar aman terhadap bahaya kebakaran, perlu diperhatikan hal-hal berikut:

Page 172: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 167

1. Setiap bangunan harus memiliki atau menyediakan jalan-jalan lingkungan dengan lebar & luas yang cukup untuk operasional kendaraan pemadam kebakaran. Halaman dan ruang parkir harus cukup untuk kendaraan pemadam (panjang 10 -15m) atau kendaraan mobil tangga (panjang 7 - 13 m) untuk berputar dan bergerak.

2. Kendaraan pemadam kebakaran harus dengan mudah berbelok; untuk itu perlu diperhatikan hubungan antara lebar jalan dengan radius belokan jalan.

Gambar 5.4. Penataan Iingkungan untuk proteksi kebakaran

Tabel 5.2 Harga “d” ( dalam m)

Lebar jalan (W)

3,0 m 3,6 m 4,2 m 4,5 mPanjang kendaraan (L) St

10,5 m 10,8 9,3 7,5 5,7

12,0 m 11,4 10,6 8,4 7,5

13,5 m 14,1 11,1 10,2 9

3. Model jalan lingkungan yang memudahkan operasional kendaraan pemadam kebakaran

Dinding penahan tanah

Dinding penahan

Ruang belok

Pagar

Pagar

Page 173: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 168

Gambar 5.5 Model jalan lingkungan

4. Penyediaan ruang yang cukup lebar untuk operasional mobil tangga kebakaran, sebanding dengan tinggi bangunannya. Contoh, untuk tinggi bangunan 20 m, diperlukan pelataran selebar 8 m agar tangga dengan sudut 700 dapat beroperasi.

Culdesac T

Buruk

Baik

Page 174: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 169

Gambar 5.6 Penyediaan ruang jalan untuk mobil pemadam

5. Membuat jarak antar bangunan yang aman agar kebakaran tidak mudah menjalar kebangunan disebelahnya, akibat konveksi atau radiasi.

Page 175: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 170

Gambar 5.7 Jarak antar bangunan yang aman

6. Hidran sebagai fasilitas lingkungan dipasang dengan jarak satu dengan Iainnya tidak lebih dan 100 m dan letak hidran dan tepi jalan tidak Iebih dari 3 m.

3. Beberapa ketentuan proteksi kebakaran pada bangunan.

1. Tersedia ‘jalan keluar’ (exit) khusus kebakaran yang terlindung dan aman dengan struktur tahan api.

2. Jumlah exit harus sesuai dengan jumlah penghuni ruang sebagai berikut

Page 176: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 171

Tabel 5.3 Jumlah “exit” minimum sesuai penghuni

Jumlah orang dalam ruang Jumlah exit minimum

50 orang

50 org atau lebih

2

2

500 org atau Iebih 3

1.000 orang atau lebih 4

setiap Iantai bangunan 2

setiap lantai basement 2

3. Lokasi exit bangunan ditempatkan pada arah yang berlawanan

Gambar 5.8 Lokasi exit bangunan

4. Jalur-jalur jalan /koridor yang menuju ke exit harus dapat bebas dari api dan asap dan tidak diperkenankan adanya koridor buntu. Apabila terpaksa terbentuk koridor buntu, maka panjangnya tidak boleh lebih dari 15 m dari mulut exit.

Gambar 5.9 Jalur-jalur jalan /koridor yang menuju ke exit harus dapat bebas dari api

Page 177: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 172

5. Lebar minimum jalur horisontal atau tangga kebakaran diperhitungkan sebagai berikut:

W = A / d.c

W = nilai unit lebar exit, minimum 80 cm.

A = luas lantai

d = kapasitas hunian, m2/orang

c = kapasitas jumlah orang yang dapat lewat per menit, untuk tiap unit lebar exit.

Tabel 5.4 Nilai kapasitas hunian dan kapasitas jumlah orang yang dapat lewat per menit

Jenis

Bangunan

Kapasitas hunian

(m2 / org)

Kapasitas ( c)

Exit horisontal Exit tangga

Rumah tinggal 20 60 45

Pendidikan 2 - 5 100 60

Kelembagaan 12 – 24 30 22

Perkantoran 10 100 60

Perdagangan 10 100 60

Tempat usaha 3 - 6 100 60

Bang. Industri 10 100 60

Gudang 30 60 45

Gedung pertemuan

Kursi tetap

Kursi tdk tetap

Tanpa kursi

1,5

0,7

0,3

100

100

100

75

75

75

Tempat berbahaya 10 60 45

6. Pintu - pintu kebakaran harus dapat menutup rapat (tak bercelah) dan dilengkapi dengan pengunci; agar dapat menghalangi penyebaran api dan asap. Pintu inibiasanya selalu dalam keadaan tertutup, dan dibuka secara manual dengan ‘batang panik’.

Page 178: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 173

Gambar 5.9 Pintu kebakaran

7. Jalur-jalur harus tetap bebas, tidak diperkenankan benda yang dapat menghalang. Jarak tempuh maksimum mencapai exit, telah distandardisasi dalam SNI (Standar Nasional Indonesia) lihat tabel lampiran di halaman berikut.

Page 179: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 174

Tabel 5.5 Jarak tempuh makslmum dan lebar bukaan untuk desain proteksi kebakaran berdasarkan

Standar Nasional Indonesia (SNI)

Jenis penggunaan

Jarak pencapaian maksimum (m)

Kapasitas/jumlah pemakai per unit lebar bukaan (x)

Lebar minimumPanjang

maksimum

(m)

Ruang tanpa

spiingkler

Ruang dengan

sprinkler

Bukaan pintu

Tangga kebakaran

Koridor, ramp, jalan

terusan

Tangga KoridorKoridor

Buntu (m)

Halaman luar

bangunan

Pintu keluar

Koridor

1 2 3 4 5 6 7 8 9 10

Bahaya tinggi 20 35 50 40 30 50 1 1 13

Industri & gudang 30 45 100 80 60 100 1,2 1,2 15

Komersial dan

perkantoran45 60 100 80 60 100 1 1 15

Pertemuan / pertunjukan

umum

45 60 100 80 60 100 1,2 1,2 13

Pendidikan/sekolah 45 60 100 80 60 100 1 1,5 13

Kesehatan /r. sakit .30 45 30 30 15 30 1 2 13

Hotel / Motel /Hostel

30 45 50 40 30 50 1 1 15

Flat / rumah susun 30 50 50 40 30 50 1 1 13

R. tinggal / Gandeng

TD TD TD TD TD TD 1 1 TD

Catatan: • Yang dimaksud dengan jarak pencapaian maksimum pada kolom (2) dan (3) adalah pencapaian dalam bangunan dengan pencapaian sedikitnya 2 (dua) jalan keluar menuju bukaan penyelamatan. Apabila dalam bangunan hanya terdapat 1 (satu) jalan keluar, maka jarak pencapaian maksimum 13 m untuk ruangan tanpa Sprinkler dan 19 m ruangan dengan Sprinkler.

• Koridor ruang kelas /sekolah minimum = 1,00 meter

• Koridor ruang pasien / rumah sakit minimum 1,00 meter

• Koridor ruang pertunjukkan umurn minimum = 1,20 meter

• TD = tidak ditentukan

Page 180: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 171

8. Untuk ruang-ruang yang harus bebas asap seperti tabung tangga, maka perlu disediakan peralatan mekanis pada sistim penekanan udara dan pengeluaran asap.

Gambar 5.10. Peralatan mekanis pada sistim penekanan udara dan pengeluaran asap.

9. Peraturan kebakaran di Indonesia melarang penggunaan elevator/lift dan eskalatorsebágai sarana penyelamatan diri pada saat terjadi kebakaran. Elevator, pada saat kebakaran hanya boleh digunakan oleh petugas pemadam kebakaran.

10. Menurut SNI, bangunan dengan ketinggian lebih dari 8 Iantai, perlu memiliki landasan helikopter, terutama untuk bangunan perkantoran, rumah sakit, hotel, perdagangan dan pertokoan.

Page 181: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 172

4. Sistem Dan Alat Proteksi Kebakaran

4.1 Sistim isarat pencegahan dini

Sistem ini dimaksudkan sebagai pendeteksi awal kebakaran dengan memberikan alarm bila disekitar alat deteksi ditemukan kelebihan temperatur/panas, ion ,asap ataunyala api.

1. Detektor manual

Gambar 5.10. Detektor manual

Sesungguhnya alat ini pasif dan sukar disebut sebagai detektor, karena yang bertindak sebagai detektor adalah manusia. Alat ini merupakan kotak tertutup, berisi saklar tarik atau tuas handel untuk membunyikan alarm, karena itu disebutjuga sebagai pull station. Manusia bila melihat kemungkinan terjadinya kebakaran di satu ruang, diharapkan memecah atau menarik tutup alat ini dan menarik tuas di dalammya

Page 182: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 173

2. Detektor panas

Bentuk detektor yang paling

tua, sederhana, harga tidak

mahal dan karena itu paling

banyak digunakan. Oleh

sebab yang dideteksi hanya

panas, maka detektor ini

paling sedikit mengirim si

nyal palsu. Namun, karena

kesederhanaannya, detektor

ini juga paling lambat res

ponnya. Sebelum mengirim alarm ia. memerlukan waktu pemanasan. yang cukup sehingga pada saat alarm diberikan, seringkali api sudah dalam kondisi sukar dikontrol lagi.

3. Detektor ion

Api membesar secara bertahap, pada awalnya, bila suatu benda terbakar ia mengeluarkan ion-ion, kemudian terlihat asap dan baru terlihat nyala api. Karena yang di deteksi adalah ion (asap dan api belum terlihat) maka alat ini sangat sensitif, lebih peka dibanding detektor asap maupun api. Kepekaan ini menuntut pemeliharaan yang rutin, sebab bila terkontaminasi alat ini dapat mengirim sinyal palsu.

4. Detektor asap

Asap merupakan tahap kedua dan pembakaran, sebelum nyala api terlihat. Asap yang dapat dilihat ini dideteksi dengan detektor fotoelektrik. Detektor asap iniideal untuk ditempatkan di ruang-ruang yang menggunakan bahan, alat,penyimpanan barang yang di curigai akan menimbulkan banyak asap bila terbakar. Namun, sering mengirimkan sinyal palsu bila digunakan di dapur.

Gambar 5.11. Detektor panas

Gambar 5.12.

Detektor ion

Page 183: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 174

5. Detektor nyala api(flame detector),

Merupakan detektor khusus. Pada kasus kebakaran bahan-bahan tertentu seperti bensin atau bahan bakar lainnya, nyala api terlihat dahulu sebelum asap, bahkan seringkali asap yang terjadi

sangat sedikit. Pada kasus semacam inilah digunakan detektor nyala api. Detektor yang bekerja dengan prinsip merespon radiasi infrared dan /atau ultraviolet yang merupakan karakteristik dan nyala api.

4.2 Air untuk melawan kebakaran.

Air sejak dahulu telah digunakan untuk melawan api, dan masih digunakan sampai sekarang sebagai bahan utama untuk memadamkan kebakaran.

1. Sistim instalasi air untuk kebakaran dalam gedung

Instalasi air kebakaran, merupakan sistem yang terpisah dan sistem air bersih. Segala sesuatu, mulai dan sumber air, tangki penampung atas dan bawah, pompa sirkulasi (termasuk sumber daya listrik), instalasi pipa dan lain sebagainya sebaiknya dibuat dan merupakan sistim yang berdiri sendiri. Tetapi agar

Page 184: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 175

ekonomis, bila sumber air yang ada sudah terjamin debitnya, maka dapat dibuat tangki gabungan antara air bersih dan air untuk kebakaran dengan syarat air untuk kebakaran tidak boleh digunakan untuk pemakaian kebutuhan sehari-hari.

Di Indonesia, sistim yang biasa dijumpai (terutama di bangunan bertingkat banyak) adalah sistim ‘down feed’, menggunakan tàngki penampung atas/atap yang mendistribusikan air kebawah dengan gaya gravitasi ke fire house’; ‘Sprinkler dan konektor ‘siamese’ . Tiap tiap jenis peralatan membutuhkan tekanan air yang berbeda-beda, karena itu letak tinggi tangki terhadap peralatan, ukuran pipa menjadi penting. (cara menghitungnya serupa dengan sistim air bersih).

Pada kasus letak tinggi tangki tidak memenuhi syarat tekanan air, perlu disediakan pompa sirkulasi khusus yang bekerja otomatis pada saat pompa tersebut menerima sinyal alarm kebakaran. Sedangkan pada bangunan yang sangat tinggi, untuk mencegah timbulnya tekanan dalam pipa melampaui batas maksimum kekuatan pipa, terutama pada lantai - lantai bagian bawah, maka perlu di pertimbangkan sistim multizone, yaitu pengadaan tangki air pada beberapa lantai dengan nilai selang tertentu (meskipun sistim ini kurang ekonomis).

Pada halaman 183, dapat dilihat suatu sistim proteksi kebakaran yang menggunakan tangki atas campuran dengan penyekat (perhatikan elevasi pemisahan outlet air. untuk kebakaran dan pemakaian sehari - hari). Pompa sentrifugal yang digunakan dua buah, dengan tujuan satu untuk back up pada saat terjadi kebakaran. Sistim ini menunjukkan penggunaan fire hose dengan syarat -syarat yang diperlukan.

Page 185: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 176

Gambar 5.13. Sistim proteksi kebakaran yang menggunakan tangki atas campuran dengan penyekat

Page 186: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 177

2. Fire Hose

• Fire hose, mempunyai panjang pipa antara15-33m (lebihmenguntungkan bila diambil jangkauan yang terbesar). Dengan demikian jarak linier maksimun antar unit fire hoseadalah sekitar 30 m.

• Daya pacar air fire hose adalah sejauh 3 m dengan nozzle 1 1/8” dan tekanan air minimum 0,8 kg/cm2 (12 psi); optimum 1,7 kg/cm2 (25 psi) dan tekanan maksimumnya 5,5 kg/cm2 (80 psi)

• Diameter ‘hose’ adalah 2 ½ “, dihubungkan langsung dengan pipa induk dan tangki atap yang berdiameter minimum 6”.

• Jarak tinggi minimum antara pipa keluar tangki atap dengan fire hose pertama dibawahnya adalah antara 7,5 - 17 m (agar dicapai tekanan air minimum).

• Tiap unit Fire hose memancarkan air sejumlah 760 liter per menit. Untuk 2 unit fire hose yang memancar selama 25 menit, dibutuhkan kapasitas tangki atap 38.000 liter.(±5000 gal.). Kapasitas tangki inilah yang dijadikan standar minimum tangki atap untuk kebakaran, atau dihitung 25% dan jumlah unit fire hose dan digunakan selama 25 menit.

• Kelemahan utama dan sistim fire hose, adalah tidak praktis menyediakan air di tangki atap untuk seluruh unit fire hose (menjadi sangat besar dan berat). Pemecahannya adalah dengan menyediakan tangki bawah yang besar yang dilengkapi dengan pompa khusus.

• Apabila sistem ini dapat digunakan juga oleh pemadam kebakaran kota, maka di lantai dasar dibuat cabang distribusi ke konektor siamnese. Namun perlu diingat bahwa mesin/mobil pemadam kebakaran mempunyai kemampuan memindahkan air 3.800 l/menit.

Page 187: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 178

Gambar 5. 14 Standar desain untuk hose rack

Gambar 5.15 Contoh konektor “siamnese”

3. Sprinkler

Sistim Sprinkler terdiri dan pipa horisontal dengan pola grid, dibawah balok

Page 188: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 179

struktur dan pada pipa tersebut; dengan jarak tertentu dipasangkan Sprinkler head.

Gambar 5.15 Sistim Sprinkler

Page 189: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 180

Section through ceiling and roof

at branch line and sprinkler head

Gambar 5.16 Contoh denah dan potongan

Sistim Sprinkler bangunan industri yang dihubungkan keluar dengan konektor siamnese tipe dinding, agar petugas pemadam dapat mensuplai air dari luar melalui konektor siamnese tersebut.

Page 190: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 181

Ada dua sistim Sprinkler;

a. sistim pipa basah;

disebut demikian karena pipa-pipanya selalu terisi air. Sistim inilah yang paling banyak digunakan.

b. sistim pipa kering;

karena pipa-pipanya kosong baru berisi air bila terjadi kebakaran. Pada sistim iniperlu dipasangkan katup air otomatis yang dihubungkan dengan detektor yang sensitif; katup membuka bila mendapat sinyal dan detektor.

Pada gambar disamping, terlihat waterflow detector, yang dicangkokkan pada pipa Sprinkler sehingga katup terletak didalam pipa. Kotak diatasnya adalah detektornya.

Pada sistim pipa kering, meskipun secara teoritis dapat menghemat air, mempunyai kelemahan, yaitu a) responnya Iebih lambat dibanding sistim pipa basah, sebab diperlukan waktu untuk mengisi air dalam pipa yang menuju ke Sprinkler head b) headdetector pada Sprinkler head kurang berfungsi.

Sprinkler head atau nozzle, digolongkan dalam 3 tipe yaitu,

a. nozzle dinding, menempel di dinding luar bangunan, di letakkan diatas bukaan (jendela). Tujuannya adalah membentuk tirai air sebagai penghalang radiasi dan bangunan tetangga yang sedang terbakar (lihat bahasan ‘jarak aman bangunan’, hal. 167)

Gambar 5.17

Nozzle dinding

Page 191: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 182

b. sprinkler tipe upright.

c. sprinkler tipe pendant.

Gambar 5.18 Sprinkler tipe pendant.

Untuk dua yang terakhir, tidak ada perbedaan yang berarti; tipe upright hanya dapat digunakan untuk ruang tanpa langit-langit sedangkan tipe pendant dapat digunakan untuk ruang yang memakai langit-langit. Keduanya mempunyai tabung kaca quartzoid yang mudah pecah; berisi cairan kimia yang sensitif / memuai bila kena panas pada suhu sekitar 58°C (136° F). Pada suhu tersebut tabung pecah dan nozzle mulai memancarkan air.

• Daya lindung tiap nozzle bervariasi tergantung dan kiasifikasi tingkat bahaya bangunannya, berkisar mulai dan 20 m2 untuk bangunan klasifikasi bahaya ringan (light hazard) seperti rumah sakit atau rumah tinggal. Sekitar 9 atau 10 m2 untuk bangunan berklasifikasi sangat berbahaya (extra hazard) seperti

Gambar 5.17 Sprinkler tipe upright.

Page 192: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 183

pabrik kimia, pekerjaan kayu atau hanggar pesawat terbang. Namun pada desain letak nozzle, untuk memudahkan, sering dipakai bentuk segi empat panjang atau bujur sangkar (nozzle menjadi titik berat segi empat tersebut) dengan satu sisinya berukuran antara 2,4 - 3,6 m, dan sisi lainnya antara 3,0 -4,2 m. Dengan perkataan lain unit segi empat yang terbesar adalah 3,6 x 4,2 m dan yang terkecil 2,4 x 3 m.

• Pipa suplai utama sprinkler berukuran 6” dengan ujung keluaran pada pusat ruang (lihat contoh gambar denah), pipa sekunder berukuran 5”, berangsur-angsur mengecil pada titik terjauh sampai ke ukuran minimum 2 ½ “. Sedangkan pipa percabangan dimulai dengan ukuran 2” pada pangkal danberangsur mengecil ke hingga pada ukuran 1”.

4.3 Pengendalian asap kebakaran.

Telah dibicarakan sebelunmya bahwa asap sebagai produk kebakaran berbahaya karena mengandung gas yang berbahaya. Pengendalian asap yang paling mula adalah dalam bentuk desain; pemilihan bahan bangunan dan bahan interior. Di usahakan menggunakan bahan yang sedikit mengeluarkan asap atáu gas berbahaya. Sebagai contoh, karpet sintetis yang biasa digunakan untuk pelapis lantai perkantoran, bila terbakar akan mengeluarkan gas HCN (Hidrogen sianida) yang mematikan, melumpuhkan syaraf sentral manusia.

Berdasarkan penelitian, sebelum nyala api terlihat, asap terjadi terlebih dahulu dan menjalar dengan kecepatan 25 cm perdetik dan pada saat nyala api terlihat kecepatan jalar asap mencapai 2 kali lipatnya (50 cm/detik). Disamping racun dan terhalangnya penglihatan, asap juga memberi dampak psikologis yaitu membuat panik para penghuni. Kepanikan ini sering menimbulkan kematian, karena saling dorong dan terinjak, melompat dan lantai yang cukup tinggi dan sebagainya. OIeh sebab itu latihan kebakaran menjadi penting, juga pengendalian asap agar terisolasi pada ruang/lantai yang terbakar saja dan dikeluarkan melalui shaft asap.

Ada dua prinsip untuk mendorong/mengarahkan asap yaitu:

a. bahwa asap akan terdorong secara alami oleh pergerakan udara yang berkecepatan tinggi dan asap mempunyai kecenderungan bergerak naik. Bila pendorong asap berkecepatan rendah, asap justru akan berbalik arah.

b. asap bergerak dan udara yang bertekanan tinggi ke udara bertekanan rendah.

Berdasarkan prinsip diatas, maka bila suatu ruang atau lantai mengalamikebakaran, maka pada ruang / lantai sekelilingnya dimasukkan udara berkecepatan tinggi dengan bantuan kipas angin sentrifugal melalui ducting AC atau ventilasi yang ada. Sedangkan ducting yang menuju ruang yang terbakar disekat, dengan cara menutup damper nya. Dengan demikian maka terjadilah ruang yang bertekanan tinggi diruang sekeliling (+) dan ruang yang terbakar bertekananrendah (-).

Page 193: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Pencegahan Kebakaran Dalam Bangunan 184

Gambar 5.18 Pengendalian asap kebakaran.

Page 194: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 184

Page 195: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 185

Dalam perencanaan bangunan bertingkat banyak , salah satu hal yang harus segera diputuskan diawal desain oleh arsitek adalah, transportasi vertikal apakah yang akan digunakan pada bangunan tersebut? Bila digunakan, yang bagaimana dan berapa banyak yang dibutuhkan? Bagaimana sistem dan besaran ukuran teknisnya? Dimana lokasinya dalam gedung?

Pilihan perlengkapan transportasi vertikal ini merupakan suatu keputusan yang cukup sulit bagi arsitek, paling tidak disebabkan ;1. Penggunaannya yang telah meluas dimasyarakat modern sekarang ini, sudah bukan

sekedar kebutuhan saja, tetapi cenderung pada kenyamanan (khususnya elevator penumpang) bahkan ‘prestige’ bangunan.

2. Kemajuan teknologi dan industri dibidang transportasi vertikal ini menimbulkan banyaknya tipe produksi dan merek dagang yang masing-masing mempunyai harga, spesifikasi teknis, keunggulan dan kekuranggannya masing-masing.

3. Tingginya harga peralatan transportasi vertikal ini, baik pada biaya awal maupun biaya operasi dan pemeliharaannya menimbulkan tuntutan dari pihak pemberi tugas agar arsitek memberi keputusan pilihan dengan kriteria ekonomis sebagai salah satu kriteria utama1.

Disatu sisi, alat transportasi vertikal mekanis, melibatkan banyak disiplin ilmu ; ilmu mekanika, listrik, digital, mesin dan lain sebagainya, yang pada hakekatnya arsitek tidak mampu menguasai seluruhnya secara mendetail. Disisi lain, dari sudut pandang arsitektural, lokasi, jumlah dan ukuran dari suatu alat transportasi vertikal menjadi bagian yang tak terpisahkan dari suatu desain bangunan, bahkan juga pada tahap proposal desain.

Oleh karena itu dalam pembahasan berikut, meskipun banyak digunakan ungkapan dan perhitungan teknis, tetapi lebih ditujukan pada pengetahuan untuk kepentingan desain arsitektur. Demikian pula pada prakteknya, meski penetapan suatu alat transportasi vertikal dilakukan dan dicerminkan dalam desain, perhitungan-perhitungan, spesifikasi teknis dan detail drawing sebaiknya dikonfirmasi dan dibuat oleh ahlinya, jelas yang pada umumnya diberikan oleh para produsennya.

1. ELEVATOR

Mekanisasi bangunan, terutama bangunan tinggi menjadi hal yang menonjol dengan timbulnya kebutuhan akan gedung-gedung tinggi diseluruh dunia.Bangunan-bangunan tinggi dalam Arsitektur tidaklah menjadi hasil karya para Arsitek dan Insinyur struktur saja, tetapi menjadi paduan karya berbagai keahlian antara lain

1 Pada berbagai penelitian, biaya awal (initial cost) untuk bangunan kantor bertingkat 20 s/d 60

lantai membutuhkan biaya sebesar kurang lebih 10% s/d 12% dari biaya total bangunan .(McGuines & Stein; 1971, p.911)

Page 196: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 186

juga Insinyur Mesin, Elektro dan Fisika Teknik, paduan antara karya Seni dan Teknologi.

Dalam perencanan bangunan-bangunan tinggi terjadi pemikiran timbal balik antara pertimbangan-pertimbangan fungsi, struktur, estetika dan persyaratan-persyaratan mekanikal maupun elektrikal.

Salah satu masalah yang menjadi pemikiran pertama pada perencanaan bangunan bertingkat banyak ialah masalah transportasi vertikal umumnya dan transportasi manusia khususnya.

Alat untuk transportasi vertikal dalam bangunan bertingkat adalah lift atau elevator. Alat transportasi vertikal dalam bangunan bertingkat tersebut akan memakan volume gedung yang akan menentukan efisiensi gedung.

Pemilihan kapasitas-kapasitas lift akan menentukan jumlah lift yang mempengaruhi pula kualitas pelayanan gedung, terutama proyek-proyek komersil.

Instalasi lift yang ideal ialah yang menghasilkan waktu menunggu disetiap lantai yang minimal, percepatan yang confortabel, angkutan vertikal yang cepat, pemuatan dan penurunan yang cepat disetiap lantai.Kriteria kualitas pelayanan elevator adalah :1. Waktu menunggu (Interval, Waiting time)2. Daya angkut (Handling capacity)3. Waktu perjalanan bolak-balik lift (Round trip time)

1.1. KINERJA ELEVATOR

Elevator, terutama elevator penumpang , (passenger elevator) telah digunakan secara meluas pada bangunan umum atau komersial, pertokoan, perkantoran, lembaga pendidikan dan rumah sakit,

Kinerja suatu elevator penumpang yang dianggap baik dan nyaman, adalah : 1. Mudah dicapai dan mudah dioperasikan.2. Yang mempunyai waktu tunggal (waiting time, interval) minimum ditiap lantai.3. Mempunyai kapasitas cukup dan dapat dengan cepat memindahkan penumpang

dari suatu lantai kelantai lain.4. Serba otomatis, dan mempunyai interior yang menarik.5. Bergerak lembut, tidak terguncang pada saat mulai bergerak atau akan berhenti dan

juga tidak berisik.6. Aman dan mudah pada saat keluar masuk kabin.

Dari dua jenis elevator, elevator kabel (juga disebut sebagai elevator listrik atau traksi) dan elevator hidraulik, elevator hidraulik lebih nyaman, karena halus gerakkannya, tidak berisik, sedikit getaran dan lebih aman (tidak digantung dikabel). Tetapi elevator hidraulik mempunyai kelemahan, yaitu :

Page 197: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 187

1. Daya tempuhnya tidak lebih dari 7,5 ft. (25 m).2. Kecepatan gerak elevator sangat lambat, tidak dapat lebih dari 200 fpm

(100cm/detik).3. Karena tidak mempunyai counterweight, maka mesin dari energi yang dibutuhkan

untuk mengangkat kabin lebih besar (daya angkat yang dibutuhkan kurang lebih 2 x elevator listrik) dan ruang mesin harus diletakkan di basement.

Akibat kelemahannya tersebut, meskipun kinerja elevator hidraulik lebih baik, sangat terbatas penggunaannya dan pada umumnya hanya digunakan untuk penggunaan khusus seperti rumah sakit. Dengan demikian maka bahasan selanjutnya lebih ditekankan pada elevator listrik yang paling sering digunakan secara umum dalam desain arsitektur.

1.2. PERALATAN ELEVATORPada prinsipnya, peralatan elevator terdiri dari kabin elevator, rel, kabel penggantung, counterweight, mesin penggerak beserta ruang mesin, shaft, sumur elevator (pit) dan alat-alat pengendali yang secara umum dapat dilihat pada gambar 6.1 dibawah.

1.3. KABIN (CAR) DAN RELMerupakan bagian yang paling dilihat oleh para pemakai, karenanya harus aman, nyaman dan didesain sedemikian agar indah dan sesuai dengan ‘prestige’ bangunan, tahan lama dan mudah dalam perawatannya . Bagian ini merupakan bagian yang paling bebas didesain oleh arsitek.

Keamanan kabin, dicerminkan dengan adanya perlengkapan pintu otomatis, alarm kebakaran dan kelebihan beban, interchome, bahan-bahan yang tahan api, dan lubang escape.

Kenyamanan, dinyatakan dengan adanya pengkondisian udara, ventilasi, peralatan pengendali otomatis, gerakan kabin yang halus, tidak terguncang pada saat akan bergerak maupun berhenti, tidak berisik, indicator tingkat lantai, pencahayaan yang lembut bahkan kadang-kadang dilengkapi dengan musik.

Page 198: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 188

Gambar 6.1. Elevator Traksi (Tipikal).

Page 199: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 189

Gambar 6.2. Denah dan potongan skematik shaft elevator

Kabin bergerak keatas dan kebawah digantung dengan kabel, mengikuti jalur rel disamping kiri dan kanan yang lurus dan kuat dan bergerak secara vertikal murni. Rel ini dipegang oleh struktur kerangka baja, atau suatu shaft struktur yang tidak terpengaruhi oleh displacement gedung.

Pada pertemuan antara kabin dan rel ini dipasangkan sepatu rem. Sedangkan pada jarak tertentu pada rel (tergantung pada jarak lantai pada gedung) dipasangkan saklar-saklar pengirim sinyal ke alat pengendali mesin penggerak untuk mengatur putaran roda penggerak (mempercepat, memperlambat, atau berhenti).

Page 200: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 190

Gambar 6.3. (a) rel ; (b) roda – pada kabin

1.4. MESIN ELEVATOR

Mesin penggerak elevator, sebenarnya terdiri dari dua bagian besar, yaitu mesin motor listrik untuk elevator traksi dan mesin hidraulik (terletak dibawah). Tetapi oleh sebab jenis ini sukar didapat di Indonesia dan juga jangkauannya terbatas, maka meskipun geraknya lebih halus dan nyaman, tatap tidak popular di Indonesia. Selanjutnya mesin elevator yang dibahas adalah mesin untuk elevator traksi.

Mesin elevator traksi merupakan mesin motor listrik untuk menggerakkan memutar roda penggerak (sheaves). Unsur penting dalam menggerakkan roda ini adalah pengaturan kecepatan putar (rpm) dan harus mampu berputar kearah sebaliknya.Untuk mengatur kecepatan putar berlaku rumusan :

Ns = p

f x 120rpm

Dimana : Ns = putaran sinkron; f = frekuensi tegangan stator motor dan p = jumlah kutub motor.

Dengan demikian dengan jumlah kutub motor yang tetap, dengan mengubah-ubah frekuensi tegangan motor, maka dapat dicapai kecepatan putaran yang berubah-ubah pula. Sedangkan untuk membalik arah putaran, digunakan teknik pembalikan / pertukaran dari 2 buah fasanya.

Masukkan daya listrik yang berupa listrik arus bolak-balik (abb) dengan tegangan konstan 380V dan frekuensi konstan 50Hz (CVCF = constant voltage constant frequency) disearahkan --- (as = arus searah) – terlebih dahulu untuk kemudian diubah menjadi abb kembali, tetapi dengan tegangan dan frekuensi yang telah berubah bagi keperluan pengaturan putaran motor. Pada sistem satu daya mesin elevator yang baru, metode pengaturan ini dikenal sebagai VVVF = variable voltage variable frequency. Pengubah listrik abb ke as dan dari as ke abb, digunakan konverter.

Pada mesin elevator lama, digunakan konverter mesin berputar (M-G set, motor generator) disebut sistem Ward-Leonard yang sudah tidak banyak digunakan lagi karena dipandang efisiensi maupun kecepatannya belum memadai, disamping masalah

Page 201: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 191

berat getaran lantai serta bising. Mesin elevator yang baru, menggunakan konverter statis dengan komponen daya semi konduktor yang disebut “AC-DC converter”, yang mempunyai karakteristik efisiensi dan kecepatan yang lebih tinggi, ringan, kecil dan lebih tenang. Konverter ini menggunakan komponen thyristor dan mirip dengan penyearah pengisi baterai.

Gambar 6.4. Motor VVVF Gambar 6.5. Contoh pemasangan motor pada mesin traksi buatan Dover

Secara garis besar, mesin elevator traksi dapat dikatagorikan menjadi dua, yaitu :a. Mesin traksi dengan roda non gigi – Gearless traction machines.b. Mesin traksi dengan roda gigi – Geared traction machines.

Gearless Traction Machines

Gambar 6.6. Gearless traction machine

Merupakan mesin arus searah atau d-c penggerak (sheave) beserta rem-nya langsung merupakan bagian dari mesin ini. Dengan tidak adanya bagian roda yang bergigi, berarti kecepatan putar motor harus sama dengan roda penggerak. Akibatnya, karena mesin d-c tidak praktis untuk putaran rendah maka mesin ini ditujukan untuk elevator

Page 202: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 192

berkecepatan tinggi, yaitu kecepatan diatas 350 fpm (1,78 m per detik)2. Karenanya mesin-mesin tipe ini biasa digunakan untuk elevator penumpang dengan kecepatan minimum 400 fpm (2 m/detik), pada beban kapasitas normal 200 sampai 4000 lbs (90,7 sampai 1.814,4 kg)3.

Antara kecepatan 400 sampai 700 fpm (2-3,5 m/detik), susunan perbandingan kabel 2 : 1 biasa digunakan dengan maksud agar lebih ekonomis, mengurangi ukuran motor dan menambah kecepatan putar roda penggerak. Diatas 600 fpm (3 m/detik) oleh sebab kecepatan motor sudah tinggi, maka perbandingan kabel 1 : 1 masih dapat digunakan dengan ekonomis.

Mesin-mesin traksi ‘gearless’ ini, dianggap lebih unggul dibandingkan mesin ‘geared’, karena dipandang lebih efisien tidak berisik, perawatan rendah dan lebih awet. Umumnya mesin ‘gearless’ dipilih untuk mendapatkan elevator berkecepatan halus dan tinggi angkat lebih dari 150 ft (45m)4

Geared traction machines

Gambar 6.7. Geared traction machines

Mesin ini menggunakan ulir dan roda gigi untuk memudahkan putaran motor dengan roda penggerak. Karena itu motornya lebih kecil meski kecepatannya tetap tinggi, 600 sampai 1800 rpm, tergantung pada kecepatan elevator yang diinginkan dan perbandingan ratio gigi rodanya. Salah satu dari listrik a-c atau d-c dapat digunakan untuk motor ini, jadi tidak seperti mesin ‘gearless’ yang harus menggunakan d-c.

2 1 ft. per minute = 0,00508 m per detik3 1 pound = 0,4536 kg4 1 foot = 0,305 m

Page 203: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 193

Mesin dengan motor a-c biasa digunakan elevator kecepatan rendah antara 25 sampai 150 fpm (0,13-0,76 m /detik) dengan menggunakan 1 atau 2 motor a-c yang dikendalikan dengan katrol rheostatis. Tidak seperti mesin d-c dengan multi voltase, mesin traksi elevator dengan a-c, pemakaiannya terbatas. Perubahan kecepatannya tidak dapat halus. Pada elevator berkecepatan mesin d-c, dipergunakan unit pengendali multivoltase (UNV = unit multivoltage). Mesin ini hanya sedikit digunakan untuk elevator penumpang, tetapi digunakan pada hampir semua elevator barang (freight elevator) yang berkekuatan antara 3-100 Hp.

I.5. PENYUSUNAN RODA PENGGERAK, KABEL DAN MESIN ELEVATOR

Untuk elevator dengan beban 4000 lb (1800 kg) paling tidak terdapat 5 macam cara penyusunan sebagai berikut :

Gambar 6.8. Varian susunan roda, beban pemberat dan mesin elevator

Gambar a), adalah susunan paling sederhana dan paling banyak digunakan terutama untuk elevator penumpang berkecepatan tinggi. Kabel diikatkan dipuncak kabin, naik melewati roda penggerak (T) dan turun melewati roda kedua (S) kebeban penyeimbang. Dengan sedikit tenaga untuk memutar roda penggerak, maka kabin naik dan turun berlawanan dengan beban penyeimbang. Karena roda T dan S hanya dilewati satu kali oleh kabel, maka sistem ini disebut sebagai ‘single wrap’.

Agak lain dengan gambar b), kabel digantungkan 1 kali pada roda S dan T berarti kedua roda tersebut dilewati kabel 2 kali karena itu disebut sebagai sistem ‘double wrap’, maksud dari cara ini adalah untuk mendapatkan gaya traksi lebih besar dibandingkan dengan yang menggunakan sistem ‘single wrap’ dan bisa digunakan untuk elevator yang berkecepatan tinggi dan otomatis.

Page 204: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 194

Pada gambar a), b) dan d), panjang kabel dari roda kedua ke beban penyeimbang sama panjangnya dengan jarak tempuh dari kabin maka disebut perbandingan kabel 1 : 1. Berbeda dengan gambar c) dimana panjang kabel pada beban penyeimbang kurang dari 2 kali dibandingkan gambar a) dan b) karena itu disebut perbandingan kabel 2 : 1.

Prinsip ini dimaksudkan agar didapat nilai lebih ekonomis pada motor berkecepatan tinggi, dibanding yang mempunyai perbandingan 1 : 1. Karenanya cara ini dipakai pada elevator yang mempunyai beban sangat berat, elevator penumpang jarak pendek atau elevator barang. Disamping itu biasanya penggunaannya terbatas pada elevator yang berkecepatan kurang dari 500 fpm (2,5 m/detik) atau elevator barang berbeban berat dengan kecepatan kurang dari 500 fpm.

Tipe a), b) dan c) menggunakan mesin traksi yang diletakkan diatas dipuncak tabung elevator, sedangkan untuk tipe d) dan e) mesin traksi diletakkan dibawah dibasement. Akibatnya pengkabelannyapun sangat berbeda, membutuhkan kabel yang lebih panjang dan konsekuensinya biaya pemeliharaannya lebih tinggi. Karena itu susunan semacam ini jarang digunakan dan hanya diperuntukkan untuk kepentingan khusus saja.

Untuk tipe e) digunakan untuk elevator berkecepatan rendah, rumah susun atau perkantoran low-rise yang tingginya tidak lebih dari 50 ft (15 m) dan kecepatan elevator tidak lebih dari 100 fpm (0,5 m/detik). Contoh aktual penggunaan elevator jenis ini (underslung elevator) adalah digedung parlemen Australia, di Camberra.

1.6. KABEL PENGGANTUNG Terdiri dari 4 sampai 8 baja kualitas tinggi yang dipasang sejajar / parallel, banyak kabel lebih ditentukan oleh kapasitas muat elevator dan kecepatannya dengan demikian beban dari kabin elevator dibagi merata diantara kabel-kabel tersebut. Kabel ini diikatkan pada puncak kabin, melalui roda penggerak mesin traksi diruang mesin (di puncak gedung / pent-house) turun kebawah ke beban penyeimbang (counter weight) yang beratnya kurang lebih sama dengan beban mati kabin plus 40% beban hidup (muatannya).

Dengan demikian maka kabel menjadi sangat penting karena seluruh beban ditanggung olehnya, dan karena itu faktor keamanan (safety factor) kabel untuk elevator penumpang ditetapkan antara 7,6 sampai 12 dan untuk elevator barang antara 6 sampai 11.

Disamping itu harus sering diadakan inspeksi dan perawatan pada kabel pada masa operasi sebab sebagai ‘multicable’ yang mengalami beban tarik, maka kabel tersebut mempunyai kemungkinan ‘mulur’ dan mengalami puntiran (mlintir).

Page 205: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 195

Gambar 6.9. Kabel penggantung kabin elevator

1.7 Alat-alat pengaman elevator

Gambar 6.10. Alat-alat pengaman

Alat pengaman elevator yang pertama adalah rem, pada mesin elevator ‘gearless’ rem ini dipasang langsung pada mesinnya. Cara kerjanya seperti rem mobil mempunyai sepatu rem berpegas yang menekan pada silinder rem (drum brake), pengontrolan tekanan rem dilakukan melalui pegas dengan elektromagnit arus d-c. Pada mesin elevator d-c penurunan kecepatan elevator dilakukan oleh mesin motornya sendiri dahulu baru kemudian remnya yang bekerja menghentikan dan mengunci kabin pada lantai tertentu.

Page 206: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 196

Pengamanan yang lain adalah alat yang digunakan untuk menjaga agar kecepatan gerak elevator tidak berlebihan dari kecepatan yang telah ditetapkan, alat ini disebut sebagai ‘centrifugal fly ball’’ atau ‘fly weight governor’ yang merupakan alat terpisah dari mesin elevatornya, pada kecepatan normal alat ini tidak mempunyai pengaruh sama sekali tetapi bila terjadi kelebihan kecepatan ‘governor’ ini akan memutus arus daya kemotor d-c, membuat rem bekerja dan menghentikan / memperlambat elevator, tetapi mungkin saja kecepatan masih tetap tidak berkurang atau bertambah dan bila hal ini terjadi maka ‘governor’ akan memerintahkan dua buah penjepit rel / ‘rail clamps’ (terletak dibawah kabin) untuk bekerja memperlambat gerak elevator. (Gambar 6.10.d)

Selanjutnya didasar pit disediakan pengaman yang disebut buffer tipe pegas (Gambar 6.10.b) atau tipe hidraulis (oil type - Gambar 6.10.c), tujuan adanya buffer disini bukanlah sebagai pelindung kabin bila jatuh tetapi cenderung sebagai penyangga agar kabin tidak turun berlebihan (agar lantai kabin tetap sama tinggi dengan lantai basement)

Alat pengaman yang lain adalah saklar pembatas atas dan bawah (final limit switch), alat ini dipasang dengan tujuan agar kabin tidak melampaui batas tempuh atas maupun bawah. Bila kabin mencapi batas atas / bawah maka saklar ini tersentuh dan bekerja menghentikan daya motor traksi serta mengaktifkan rem utama.

1.8. PINTU ELEVATOR

Pintu elevator berkaitan dengan handling capacity dari elevator, pintu elevator yang sempit membuat waktu penumpang keluar / masuk menjadi lama berarti memperpanjang waktu berhenti elevator disatu lantai serta menimbulkan ketidak nyamanan. Dengan demikian untuk kelancaran keluar masuk penumpang khususnya untuk elevator penumpang bangunan komersial yang berdaya muat besar, dianjurkan menggunakan pintu elevator dengan bukaan 3ft. 6” (± 120 cm). Kurang dari ukuran tersebut hanya digunakan untuk elevator bermuatan rendah seperti untuk rumah susun atau bangunan lain yang mempunyai trafik rendah.

Page 207: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 197

Gambar 6.12. Rekomendasi bukaan pintu

Untuk keamanan maka pintu elevator dimasa kini menggunakan pintu-pintu otomatik elektris yang sinkron dengan leveling control. Dengan demikian maka secara otomatis pintu akan terbuka penuh pada saat berhenti ditiap lantai, kecepatan pintu membuka dan menutup tergantung pada tipe pintu dan lebar bukaan pintu. Namun apapun tipe pintunya semuanya disyaratkan hanya boleh menggunakan daya gerak maksimum 7 ft.lbs (9,5 joule)5.

:

Gambar 6.11. Kontrol logic pintu

Berbagai tipe pintu dan penggunaannya adalah sebagai berikut :

5 1 ft. lb = 1,365 joule

Page 208: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 198

Gambar 6.13. Tipe Pintu Elevator.

Gambar pintu 7.13.a. menunjukkan tipe pintu elevator sorong-tunggal, mempunyai lebar bukaan antara 24”-36” (60-90 cm). Pintu tipe ini sudah jarang dijumpai karena penggunaannya yang sangat terbatas, yaitu untuk bangunan komersial kecil atau rumah susun kecil dengan kapasitas muat elevator yang kecil pula.

Gambar 6.13.b. dan c terlihat serupa berukuran lebar bukaan 42” (105 cm), pintu dengan bukaan tengah ini dianggap sebagai tipe standart yang biasa digunakan untuk bangunan komersial khususnya perkantoran. Tipe yang berukuran lebih lebar 48”- 60” (120-150 cm) lazim digunakan untuk rumah sakit dan service elevator. Perbedaan antara b dan c terletak hanya pada kecepatan membuka / menutup pintu. Pada b kecepatan seragam / sama cepat yang c kecepatan berbeda antara satu daun dengan yang lainnya sedangkan gambar d menunjukkan pintu elevator yang sudah diperindah guna meningkatkan prestige bangunan.

Page 209: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 199

Gambar 6.13.c, merupakan pintu elevator yang biasa digunakan untuk departement store dan freight elevator dengan lebar bukaan 60” (150 cm). Pada semua tipe pintu oleh sebab dibuat otomatis, maka untuk keamanan disyaratkan oleh ANSI (American National Standard Institute) untuk menggunakan ‘pengaman tepi’ (safety edge device). Alat ini bila mendapat tekanan dengan kekuatan tertentu akan mengubah gerak otomatis pintu dari posisi menutup menjadi terbuka, dengan demikian dapat dicegah bahaya orang atau barang terjepit pintu.

Namun untuk elevator ‘kelas tinggi’ ditambahkan pula pengaman ganda yang berupa sensor optik atau mata elektronis yang berfungsi serupa dengan ‘pengaman tepi’ tadi. Cara bekerjanya ialah bila sinar antara dua mata elektronis (pengirim dan penerima) terhalang maka secara otomatis gerak menutup pintu dirubah menjadi gerak membuka.

Gambar 6.14. Sensor Optik Pintu Elevator

1.9. SISTEM KONTROL ELEVATORSistem operasi elevator adalah sistem otomat yang mengontrol semua gerak satu atau lebih elevator agar efisien dan nyaman bagi pemakainya, misalnya bila ada sinyal panggilan dari suatu lantai maka otak kontrol merespon, mendeteksi dan mencari elevator yang terdekat untuk berhenti dilantai yang memanggil. Contoh lain ialah bila suatu elevator bebas dari panggilan dari semua lantai yang dilayaninya, maka ia otomatis akan ‘stand by’ di lobby dengan pintu selalu terbuka penuh.

Dengan demikian kontrol elevator ini berfungsi mengolah sinyal panggilan, mendeteksi posisi semua elevator, merespon, menggerakkan kabin naik atau turun, memberi perintah berhenti, mengubah modus operasi gerak motor, dan lain-lain.

Page 210: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 200

Kerja berat tetapi cerdik ini dibebankan pada suatu rangkaian berbentuk logika-logika CMOS – Mikro Kontroler Komputer yang diletakkan dalam suatu panel tersendiri diruang mesin dan disebut sebagai panel kontrol.

Gambar 6.15. Panel control di ruang mesin

1.10. MENGHITUNG JUMLAH KEBUTUHAN ELEVATORTelah disebutkan bahwa elevator haruslah efisien dalam penggunannya, faktor kenyamanan dari elevator selain faktor kenyamanan fisik yang telah dibicarakan terdahulu mempunyai tiga factor lain untuk mencapai kenyamanan psikologis yaitu Interval, Handling Capacity dan Travel time.

1.10.1. Interval dan Waiting timeDari sudut pandang penumpang elevator kondisi ideal baginya adalah ketika penumpang tersebut sampai di lobby (atau suatu lantai tertentu), elevator telah tersedia, terbuka dan siap berangkat atau paling tidak diharapkan menunggu sebentar saja elevator yang akan datang. Tetapi elevator berangkat menurut suatu selang waktu tertentu (interval), sedangkan penumpang datang secara acak akibat timbul waktu tunggu (waiting time) bagi penumpang. Secara rata-rata waktu tunggu ini diasumsikan setengah dari interval.

Page 211: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 201

Berdasarkan penelitian, interval 25 sampai 30 detik untuk bangunan komersial dianggap ‘baik ’ dan interval 45 detik dinilai ‘masih dapat diterima’ untuk bangunan kantor yang tidak terletak dipusat kota (kantor sibuk) – lihat table berikut :

Tabel 6.1. rekomendasi nilai / interval

Jenis Bangunan Interval (detik)Bangunan Kantor

Kantor sibuk / pusat kota Kantor sewa

25 – 3010 – 45

Permukiman Apartement mewah Apartement menengah Apartement sederhana Asrama Hotel kelas Saturday Hotel kelas dua

50 – 7060 – 8080 – 12060 – 8040 – 6050 - 70

Dengan demikian bila nilai interval masih didalam selang waktu yang tercantum di table dapat diharapkan penumpang tidak merasa adanya kelambatan / waktu tunggu yang terlalu lama yang menjengkelkan.

1.10.2. Handling CapacityHandling Capacity tergantung pada frekuensi ketersediaan elevator atau interval dan dua factor lainnya yaitu jumlah penumpang yang akan diangkut dari kabin elevatornya sendiri.

Tabel 6.2. Kapasitas Kabin Elevator PenumpangKapasitas Kabin Kapasitas Maksimum Kapasitas Normal(lbs) (kg) Penumpang (orang) Penumpang per trip

1.2002.0002.5003.0003.5004.000

544,3907,2

1.134,01.360,81.567,61.814,4

71217202328

61013161922

Pada table diatas terlihat dua angka yaitu kapasitas minimum dan kapasitas maksimum penumpang. Kapasitas minimum adalah 80% dari kapasitas maksimum dan angka normal inilah yang digunakan untuk penghitungan jumlah elevator maskipun dalam kondisi ‘pear hour’.

Page 212: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 202

Tabel 6.3. Handling Capacity (HC) minimum untuk N unit elevator

Jenis Bangunan Presentase Populasi Penumpang Yang Diangkut dalam 5 menit

Bangunan Kantor Kantor sibuk / pusat kota Kantor sewa Kantor single purpose

13 – 1512 – 1415 – 18

PermukimanApartement mewah, prestisius

Apartement menengah dll Asrama Hotel kelas 1 Hotel kelas 2

5 – 76 – 8

10 – 1112 – 1510 - 12

Dalam sistem elevator HC selalu di standartkan sebagai kapasitas angkut dalam 5 menit, didasarkan pada jumlah penumpang yang masih mampu diatasi oleh sistem elevator pada periode sibuk. Kondisi ini dapat diekspresikan sebagai berikut :

HC = I

p300Konstanta 300 didapat dari konversi 5 menit menjadi detik.

p = jumlah penumpang yang dapat diangkut satu elevator.I = interval (detik).

Dengan demikian terlihat korelasi antara interval dengan HC bila interval = 30 detik maka HC = 10 p

1.10.3. Travel Time / Average Trip TimePengertian dari average travel time adalah lamanya waktu yang dibutuhkan seseorang untuk sampai pada tujuannya, didefinisikan sebagai setengah dari interval (waktu tunggu di lobby) ditambah waktu perjalanan (nilai rata-rata) sampai berhenti dilantai tujuan.

Untuk bangunan komersial, average trip time dibawah 1 menit dinilai “sangat diharapkan”, selama 75 detik “masih bisa diterima”. 90 detik “kurang diinginkan” dan 120 detik (dua menit) merupakan “batas toleransi”. Hasil penelitian inilah yang menjadi dasar mengapa suatu bangunan yang sangat tinggi perlu dibuat beberapa zone elevator. (biasanya dijadikan 3 zone bawah, tenggah dan atas).

Untuk zone atas, elevator didesain agar tidak berhenti dizone tengah atau bawah (kecuali lobby), dan kecepatan pada saat melewati zone bawah dan tengah digunakan kecepatan express. Alasan yang sama diluar alasan struktur menyebabkan desain bangunan tinggi dibuat makin keatas makin kecil luas lantai, sebab diasumsikan orang sedang mendatangi lantai paling atas pada bangunan komersial yang sangat tinggi.

Page 213: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 203

1.10.4. Round-Trip TimeRound-trip time atau waktu perjalanan elevator ulang alik merupakan waktu yang dibutuhkan oleh suatu kabin, mulai dari pintu membuka disuatu lantai (misalnya lobby), berangkat, sampai kembali dan membuka pintu dilantai yang sama (di lobby lagi).

Tetapi faktanya sukar sekali mengetahui secara pasti berapa kali kabin akan berhenti dalam satu kali round-trip, karena itu dalam menghitung round-trip dilakukan pendekatan secara statistik / probabilitas atau pendekatan sebagai berikut:1. Besaran-besaran yang digunakan dimisalkan kapasitas 1 elevator yang digunakan

adalah p orang, jumlah lantai = n story, kecepatan elevator = s detik dan jarak lantai = h meter.

2. Asumsi yang digunakan menurut Guiness (1971) mengkalkulasi Round-trip time(RT) didasarkan pada satu elevator saja, artinya “nilai interval sama dengan round-trip time”. RT. Merupakan penjumlahan rangkaian peristiwa penumpang masuk / keluar elevator (dalam keadaan terbuka) dilobby / lantai dasar, pintu elevator membuka dan menutup ditiap lantai sambil memasukkan / mengeluarkan penumpang demikian seterusnya sampai ke lantai atas kemudian elevator dianggap meluncur turun tanpa berhenti lagi sampai ke lobby / lantai dasar lagi dan kemudian membuka pintu.

Berdasarkan asumsi tersebut, RT dihitung sebagai berikut :1. Bila kapasitas kabin adalah p orang dan tiap penumpang untuk masuk dan keluar

dari elevator membutuhkan waktu 1,5 detik, maka waktu penumpang keluar dan masuk dilantai dasar / lobby adalah 1,5 p detik.

2. Bila waktu yang dibutuhkan pintu elevator menutup atau membuka adalah 2 detik, maka waktu pintu menutup dilantai dasar adalah 2 detik.

3. Pintu elevator membuka dan menutup disetiap lantai tingkat (tidak termasuk -lantai dasar) maka yang dibutuhkan : (n-1) x (2+2) detik = 4 (n-1) detik, n = jumlah lantai termasuk lantai dasar.

4. Penumpang yang berangkat sejumlah p, keluar tiap lantai tingkat secara terbagi rata pada tiap lantai dikeluarkan sejumlah p/(n-1) orang, maka waktu yang dibutuhkan (n-1) x 1,5 x p/(n-1) detik = 1,5 p detik.

5. Karena jarak lantai h meter, maka setiap jarak lantai ditempuh selama h/s detik.Jadi waktu yang dibutuhkan perjalanan elevator bolak balik adalah

(n-1) x 2 x h/s detik = 2 (n-1) x h/s detik =s

)1-n (2h

6. Pintu elevator membuka dilantai dasar = 2 detik Dengan demikian penjumlahan factor 1 s/d 6 diatas adalah :

RT = 1,5 p + 2 + 4 (n-1) + 1,5 p +s

)1-n (2h+ 2

RT = 3 p + 4 + 4 (n-1) +s

)1-n (2h=

s

1)-2h(n 1)s-4(n 4.sp.s.3

RT =s

2h)(4s1)-(n s4)3( pdetik

Page 214: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 204

Mengingat perhitungan RT adalah untuk satu elevator saja, dimana interval sama dengan RT, maka pada sistem dengan N unit elevator, interval akan berkurang secara

proporsional sesuai dengan jumlah elevatornya. Hal ini diekspresikan sebagai I = N

RT

detikSelanjutnya bila hc adalah handling capacity selama 5 menit untuk satu elevator, maka

: hc = RT

p300dan handling capacity untuk N elevator adalah HC = N x hc

atau N = hc

HCunit

1.10.5 Kecepatan ElevatorMemilih kecepatan elevator juga merupakan pekerjaan yang sulit, lebih bersifat try and error, sebab setiap merek produk elevator biasanya menyediakan berbagai jenis kecepatan dan kapasitas elevator untuk menentukan pilihan, perlu diperhitungkan terlebih dahulu round Trip Time, baru kemudian dapat ditemukan intervalnya, apakah melewati batas maksimum interval yang direkomendasikan atau tidak. Bila tidak melewati, maka kecepatan elevator tersebut dapat digunakan, sebaliknya, berarti kecepatan elevator terlalu lambat, perlu dibuat perhitungan ulang dengan kecepatan elevator yang lebih tinggi. Tetapi, guna perhitungan awal, oleh sebab terdapat korelasi antara minimum kecepatan elevator dengan tinggi bangunan, maka telah disediakan tabel rekomendasi kecepatan elevator sebagai berikut:

Tabel 6.4. Rekomendasi kecepatan elevatorFungsi

bangunanKapasitas kabin

elevatorKecepatan minimum6 Jarak tempuh kabin

pounds kg fpm m/detik feet mPerkantoran

Kecil SedangBesar

2.0003.0003.500

1.1341.3611.588

350 – 400500 – 600

700800

1000

1,8 – 22,5 – 3

3,545

0 – 125126 – 225226 – 275276 – 375diatas 375

0 – 37,537,8 – 67,567,8 – 82,5

82,8 – 112,5> 112,5

Hotel2.5003.000

1.1341.361

350 – 400500 – 600

700800

1000

1,8 – 22,5 – 3

3,545

0 – 125126 – 225226 – 275276 – 375

diatas 375

0 – 37,537,8 – 67,567,8 – 82,5

82,8 – 112,5> 112,5

Rumah Sakit

3.5004.000

1.5881.814

150200

250 – 300350 – 400500 – 600

700

0,81

1,3 – 1,51,8 – 22,5 – 3

3,5

0 – 6061 – 100

101 – 125126 – 175176 – 250diatas 250

0 – 1818,3 – 30

30,3 – 37,537,8 – 52,552,8 – 75

> 75

6

mesin “geared” digunakan sampai 350 fpm; “gearless untuk kecepatan tinggi

Page 215: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 205

Apartemen7

2.0002.500

9071.134

100200

250 – 300350 – 400

0,51

1,3 – 1,51,8 – 2

1 – 7576 – 125

126 – 200diatas 200

0,3 – 22,522,8 – 37,537,8 – 67,5

> 67,5

Pertokoan ritel3.5004.0005.000

1.5881.8142.268

200250 – 300350 – 400

500

11,3 – 1,51,8 – 2

2.5

0 – 100101 – 150151 – 200diatas 200

0 – 3030,3 – 4545,3 – 60

> 60

Kecepatan elevator yang dipilih tergantung pada tinggi bangunan, makin tinggi bangunan , makin besar kecepatan lift yang diperlukan guna menghemat waktu bolak-balik elevator yang kemudian mempengaruhi waktu tunggu elevator. Batas kecepatan elevator adalah gerak jatuh bebas yang disebabkan oleh gravitasi ; yaitu 10 m per detik. Jadi kecepatan elevator terendah adalah sekitar 1 m/detik dan yang tertinggi mendekati angka 10 m/detik. Secara umum, kecepatan 100-600 fpm (0,5-3 m/det.) dikatakan berkecepatan rendah dan 600-1200 fpm (3-6 m/det) berkecepatan tinggi.

Pengaruh kecepatan elevator terhadap biaya dan tinggi bangunan, dapat ditunjukkan oleh penggunaan energi listriknya. Energi yang diperlukan elevator dengan kapasitas porang dan kecepatan s m/detik adalah sama dengan enerji potensial elevator berikut muatannya. Tenaga listrik yang dibutuhkan hanya sebesar rnuatannya saja, sebab berat kabin elevator sudah diimbangi oleh counterweight.

Daya(E) = waktu

kerja=

h/s

75.p.h75. p. s kgm / detik = p. s HP = 0,746 p.s. Kw8

Sebagai contoh; bila elevator berkapasitas p = 15 org, kecepatan s = 1 m/detik akan menggunakan daya listrik :

E= 0,746 x 15 x 1 Kw = 11,2 Kw.

Dengan mudah dapat dilihat bahwa mengubah kecepatan menjadi 2 (2 kali lipat) dengan kapasitas elevator yang sama menyebabkan energi yang dibutuhkan berubah 2 kali lipat pula. Dengan demikian , maka pemilihan kecepatan elevator dan waktu tunggu yang wajar merupakan hal yang penting dalam desain

Sebagai catatan perlu diingat bahwa energi daya listrik yang dibutuhkan dari suatu elevator haruslah dihitung berdasarkan spesifikasi dari pabrik pembuatnya masing-masing. Perhitungan diatas hanyalah merupakan perhitungan kasar (rule of thumb) guna keperluan perbandingan desain saja.

1.10.6 Populasi gedung

Jelas kiranya, bahwa untuk menentukan jumlah elevator dalam suatu gedung, sangat tergantung pada, fungsi gedung, luas lantai dan tinggi gedung. Masalah utama, pada 7 Federal Housing Association , mensyaratkan penggunaan full variable control; minimum harus dua elevator; 120

tempat tidur per elevator, untuk bangunan apartemen yang lebih dari 7 lantai8 1 Hp = 75 kgm/detik = 0,746 Kwatt

Page 216: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Penyediaan Transfortasi Vertikal Dalam Bangunan 206

saat mengabstraksi /membuat konsep desain, arsitek sudah harus menentukan sistem dan jumlah elevator yang digunakan. Tetapi jumlah populasi yang tepat dari suatu gedung (tiap lantai kepadatannya dapat berbeda-beda) hanya dapat dibuat paling tidak sesudah desain pra rencana selesai dibuat. Untuk memecahkan masalah tersebut, dibuat semacam standarisasi populasi gedung berdasarkan tipe fungsinya, yang hanya boleh digunakan untuk menghitung elevator saja, bukan digunakan sebagai standar arsitektur.

Tabel 7.5; adalah tentang efisiensi gedung perkantoran untuk mendapatkan net area (luas lantai terpakai). Untuk gedung lain yang bukan perkantoran, perlu dicari dari sumber-sumber standar arsitektur lainnya. Tabel 7.6, ditujukan untuk mengkonversi luas lantai netto tersebut menjadi populasi pengguna elevator.

Tabel 6.5. Efisiensi bangunan perkantoranLantai Efisiensi bangunan perkantoran

0 - 10 lantai kurang lebih 85% dari luas bruto0 - 20 lantai lantai 1-10 kurang lebih 80% dari luas bruto

11-20 kurang lebih 85% dari luas bruto0 - 30 lantai lantai 1-10 kurang lebih 75% dari luas bruto.

11-20 kurang lebih. 75% dari luas bruto21-30 kurang lebih 85% dari luas bruto

0 - 40 lantai lantai 1-10 kurang lebih 75% dari luas bruto11-20 kurang lebih 80% dari luas bruto21-30 kurang lebih 85% dari luas bruto31-40 kurang lebih 90% dari luas bruto

Tabel 6.6. Populasi.antuk perldrsan penghitungan elevatorJenis Bangunan Luas lantai netto,

Bangunan perkantoran sq.ft./person m2/orangKantor, campuran berbagai jenis usahaLarge lower floor 90-1009 8,4 - 9,3Upper floor 110-130 10,2 - 12Average use 120 11,1Kantor dengan satu jenis usaha 90-110 8,4 - 102

Hotel orang per kamar tidurhotel biasa, penggunaan normal 1,3hotel untuk konvensi 1,7

Rumah sakit pengunjung per tempat tidur10

Rumah saldt umum swasta 1,5Rumah saldt umum pemerintah 3-4

Apartemen orang per kamar tidurapartemen rental, mewah. 1,5apartemen rental, menengah 2,0apartemen sederhana 2,5-3,0

9 Kepadatan untuk tiap lantai dapat berbeda untuk daerah administrasi; populasinya dapat dihitung

berdasarkan 50 sq.ft per orang (4,6 m2/orang) 10 Jika jam kunjungan. tidak dibatast populasi pengunjung menentukan jumlah elevator, bila dibatasi

pada jam tertentu saja, maka jumlah tenaga staff yang dijadikan penentu jumlah elevator. Bila kegiatan rumah sakit diperkirakan akan sangat sibuk, maka perlu dipertimbangkan penggunaan kombinasi elevator 'penumpang' dan elevator 'rumah sakit' (yang selalu Iebih besar) agar ekonomis.

Page 217: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 207

1.10.7 Contoh penghitungan jumlah elevator

Sebuah gedung Perkantoran yang terletak di pusat kota, direncanakan untuk disewakan untuk berbagai jenis usaha kantor (kantor campuran). Jumlah lantai bangunan termasuk lobby (storey) adalah 15 lantai dan Yang disewakan hanyalah 14 lantai diatasnya. Tiap lantai mempunyaj luas lantai netto kurang lebih sama (average use), seluas 12.000 sq.ft (1.114 m2) dan jarak lantai ditetapkan 12ft.(3,6 m).Tentukan berapa jumlah elevator yang dibutuhkan gedung perkantoran tersebut.Jawab:1. Dari tabel 7.3, untuk kantor sibuk /dipusat kota ditentukan Handling Capacity

(HC) minimum 13 %2. Dari tabel 7.1, Interval maksimum yang diperbolehkan adalah 30 detik3. Dari tabel 6. Populasi kantor campuran dengan average use dihitung dengan

standar 11, 1 m2lorang. Dengan demikian maka populasi gedung adalah

= 11.1

m111. x lantai14 2

= 1.400 orang

4. Dengan HC min = 13 %, maka HC= 0, 13 x 1400 = 182 orang5. Jarak tempuh elevator adalah 14 x 3,6 m = 50,4 m

Dari tabel 7.4 Jarak tempuh tersebut terletak dalam. Selang elevator yang berkecepatan 500 -600 jpm, dipilih elevator dengan kecepatan 500 fpm (2,5 m/delik) ; ingat yang lebih cepat lebih mahal biaya. instalasi maupun operasinya.Dari label 7.4 yang sama dipilih elevator dengan kapasitas beban 3.000 lbs (1.361 kg); Yang berarti mempunyai kapasitas angkut normal 16 orang (lihat tabel 7.2)

6. Round-trip dihitung berdasarkan rumus yang telah didapat :

RT=s

2h)1)(4s-(n 4)s(3p detik

RT = 2.5

3,6)2.2,51)(4.-(144)2,5(3.16 detik

RT = 142 delik

7. Dalam. 5 menit ; satu elevator dapat mengangkut

hc = RT

p300=

142

16.3000= 33,8 orang

N = hc

HC=

8,33

182= 5,4 unit elevator.

Karena angka 182 adalah angka minimum; berasal dari HCmin =13 % maka jumlah elevator tidak boleh dibulatkan kebawah (menjadi 5) tetapi dibulatkan keatas menjadi 6 unit elevator.

8. Interval yang terjadi ; I= N

RT=

6

142= 23,7 detik; sedangkan interval maksimum

adalah 30 detik, jadi perhitungan diatas sudah memenuhi syarat.

Page 218: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 208

Apabila interval yang terjadi lebih besar dari interval maksimum, berarti kecepatan elevator yang dipilih terlalu lambat, perlu di buat penghitungan ulang dengan mempercepat elevator , akibatnya RT menjadi lebih singkat, namun harga elevator lebih mahal.

Melihat pada angka N yang didapat = 5,4 unit elevator; kurang efisien, maka terdapat alternatif lain, yaitu menaikkan kapasitas elevator sedemikian rupa sehingga, angka N yang terjadi menjadi 5 atau lebih kecil sedikit dari 5.

Dengan demikian, meskipun dalam penghitungan diatas sudah didapat nilai N yang memenuhi nilai interval, tidak berarti hasil tersebut efisien. Artinya, harus selalu dipertimbangkan lagi berbagai kemungkinan dengan variabel kecepatan elevator dan variabel. kapasitas elevator, agar dicapai pilihan elevator yang tepat dan ekonomis.

Pada prakteknya, meskipun penghitungan ulang tersebut mungkin melelahkan , tetapi dapat meningkatkan citra arsitek dimuka konsultan ME dan Pemberi tugas.

1.11 Lokasi dan ukuran ruang

Sebagai alat transprotasi vertikal gedung, elevator membutuhkan ruang yang terintegrasi secara arsitektur pada bangunan. Ruang-ruang yang memerlukan perhatian dalam hal ini adalah ; hall elevator, shaft dan ruang mesinnya.

1.11.1 Hall elevator

Lobby bangunan, biasanya merupakan tempat penerimaan pertama orang-orang yang datang kebangunan; tempat para pengunjung berorientasi sebelum menuju bagian atau lantai bangunan yang ditujunya. Oleh karena itu, hall elevator paling tidak harus terlihat jelas dari arah lobby, bahkan bila memungkinkan dapat menjadi bagian perluasan lobby itu sendiri. Disamping itu hall elevator, idealnya harus mudah dicapai penghuni bangunan dari semua arah, karena itu untuk bangunan yang sangat luas atau panjang, perlu dipertimbangkan pembagian bangunan dalam beberapa zone elevator agar jarak capai penghuni ke elevator tidak terlalu jauh.

Hall elevator, disamping berfungsi sebagai ruang sirkulasi pencapaian ke elevator , terutama pada saat jam penggunaan puncak (peak hour). Kondisi ini menyebabkan :a. sebaiknya hall elevator tidak menjadi lintasan sirkulasi lainb. ukuran hall mampu menampung sejumlah orang yang menunggu datangnya

elevator pada jam puncak dengan standar 0,4 m2 per orang

Konfigurasi shaft dengan hall minimum elevator, yang umum dijumpai dan dianggap efisien adalah sebagi berikut :

Page 219: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 209

1.11.2. SHAFT Shaft merupakan ruang utama yang harus terintegrasi dengan bangunan. Tabel berikut merupakan dimensi shaft tipikal yang merupakan fungsi dari kapasitas dan tipe elevator, dapat digunakan untuk perancangan awal bangunan. Namun rancangan final harus menggunakan spesifikasi teknis yang dibuat oleh pabrik elevatornya (tiap merek berbeda ukurannya). Elevator untuk rumah sakit biasanya lebih panjang atau dalam,karena harus muat ukuran tempat tidur, kursi roda, kereta laundry dan barang-barang lainnya.

Page 220: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 210

Tipe elevatorKapasitas penumpang normal Ukuran Shaft(cm)

(pounds) (orang) Lebar KedalamanTraksi /kabel 1.200 6 195 150

2.000 10 225 1802.500 13 255 2253.000 16 270 2403.500 19 285 2554.000 22 300 255

Hidraulik 1.500 8 195 1352.000 10 225 1502.500 13 255 1653.000 16 255 1803.500 19 255 2104.000 22 270 210

1.11.3. RUANG MESINElevator tipe traksi memerlukan ruang mesin yang berbeda di penthouse, tepat diatas shaft tiap elevator. Lantai ruang mesin tingginya lebih satu setengah kali dari jarak lantai bangunannya dan luasnya harus lebih dua kali ukuran shaft. Mesin traksi ‘gearless’ yang didesain untuk kecepatan lebih dari 1,8 m/detik, membutuhkan ruang mesin yang lebih luas dari tipe traksi ‘geared’. Mesin untuk elevator hidraulik berukuran kurang lebih 1x2 m dengan tinggi 1,7 m diletakkan basement, ruang tambahan untuk perawat perlu ditambahkan disekeliling mesin tersebut.

Contoh gambar denah dan ukuran ruang mesin sesuai dengan konfigurasi 2, 4, 6 elevator dan sesuai dengan kapasitas serta kecepatan yang berbeda-beda .Contoh denah Shaft / hoistway dan ruang mesin untuk 2 unit elevator penumpang type traksi “ gearless 2 : 1 ; kapasitas 2000 lbs ; 500 fpm

Gambar 6.16 . Denah shaft, konfigurasi 2 elevator (satuan mm)

Page 221: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 211

Gambar 6.17. Denah ruang mesin, konfigurasi 2 elevator ( satuan mm )

Contoh denah shaft / hostway untuyk konfirgurasi 4 unit elevator penumpang, type traksi “ gearless 1 : 1 “ ; kapasitas 3500 lbs ; kecepatan 800 fpm

Gambar 6.18. Denah shaft, konfigurasi 4 unit elevator (satuan mm)

Page 222: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 212

.Gambar 6.19. Denah ruang mesin, konfigurasi 4 unit elevator (satuan mm)

Contoh denah shaft / hostway untuyk konfirgurasi 6 unit elevator penumpang, type traksi “ gearless 1 : 1 “ ; kapasitas 3000 lbs ; kecepatan 1.200 fpm

Gambar 6.20. Denah shaft, konfigurasi 6 elevator (satuan mm)

Page 223: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 213

Gambar 6. 21. Denah ruang mesin, konfigurasi 6 elevator (satuan mm)

Catatan : Ruang mesin, terdiri dari 2 lantai ; lantai pertama seukuran dengan koridor berisi motor genset elevator. Gambar di atas adalah gambar lantai kedua yang terletak di atas lantai pertama

Page 224: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 214

Gambar 6.22. Detail ukuran pintu elevator

Page 225: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 215

Gambar 6.23. Elevator penumpang; traksi “ gearless” ; kapasitas 2500 – 4000 lbs, kecepatan 700 – 1200 fpm

Page 226: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 216

Gambar 6.24. Elevator penumpang; traksi “ gearless” ; kapasitas 2500 – 4000 lbs, kecepatan 500 fpm

Page 227: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 217

Gambar 6.25. Elevator penumpang; traksi “ geared ” ; kapasitas 2000 – 4000 lbs, kecepatan 200 - 3500 fpm

Page 228: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 218

Gambar 6. 26. Elevator untuk rumah sakit ; traksi “ geared & gearless” ; kapasitas 4000 – 5000 lbs, kecepatan 200 – 800 fpm

Page 229: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 219

Gambar 6. 27. Elevator barang ( freight); traksi “ geared ” ; kapasitas 4000 –10000 lbs, kecepatan 75 – 200 fpm

Page 230: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 220

Gambar 6.28. Elevator penumpang ( 2000 – 4000 lbs ) dan rumah sakit ( 4000 –5000 lbs ); hidraulik ; kecepatan 50 – 150 fpm

Page 231: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 221

Gambar 6.29. Elevator barang ( freight ); hidraulik ; kapasitas 2000 – 10000 lbs, kecepatan 50 – 125 fpm

Page 232: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 222

2. ESKALATOR

Eskalator yang disebut juga sebagai tangga bergerak atau tangga listrik, sangat populer penggunaannya pada pertokoan, terminal-terminal darat, laut dan udara. Eskalator merupakan alat transformasi vertikal yang efisien dan ekonomis, karena daya angkutnya yang besar, belum tertandingi alat angkut vertikal yang lain.

Eskalotor mampu memindahkan 10.000 orang perjam. Bila elevator untuk transformasi bangunan lebih dari 5 lantai, maka eskalator sangat efisien untuk transformasi dua sampai lima lantai. Namun eskalator mempunyai kelemahan pula, yaitu tidak didesain untuk mengangkut orang berkusi roda dan mengangkut barang-barang.

Eskalator, sebagai bagian dari sirkulasi bangunan, maka ditempatkan dan berhubungan langsung dengan sirkulasi tersebut tanpa terhambat pintu atau lain sebagainya.

2.1 KAPASITAS ANGKUTStandar kecepatan gerak eskalator yang umum dibuat adalah 90 dan 120 fpm. (27,40 dan 36,60 meter per menit).Kecepatan selain dari pada itu harus dipesan,dan kecepatan maksimum yang diijinkan oleh peraturan bangunan adalah 125 fpm (38 m/menit).

Pada umumnya eskalator mempunyai kedua kecepatan tersebut sekaligus. Pada situasi normal, kecepatan yang digunakan 90 fpm, dan pada situasi padat (rush hour) digunakan kecepatan 120 fpm.

Ada tiga model lebar standar eskalator, yaitu 32, 40, dan 48 inches (81,102 dan 122 cm). Model 32” (81cm) mempunyai lebar anak tangga 61 cm ; mampu menampung satu orang dewasa dan satu anak kecil (1 ¼ orang) secara berdampingan per anak tangga. Model 40” (102 cm), mempunyai lebar anak tangga 81 cm dan model 48” (122 cm) mempunyai lebar anak tangga 102 cm, keduanya didesain untuk menampung dua orang dewasa berdampingan per anak tangga.

Page 233: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 223

Ketiga model tersebut, mempunyai lebar injakan (i) 41 cm dan tanjakan (t) 20 cm. Kapasitas angkut eskalator, merupakan fungsi dari kecepatan dan lebarnya (ukuran dalam antar balustrade). Kapasitas maksimum eskalator didasarkan pada kepadatan orang per anak tangga sebagai berikut :

LEBAR ANAK TANGGA

KECEPATAN KAPASITAS ANGKUT

Maksimum Aktual

32” (81m) 90 fpm 5.000 3.750 orang per jam

120 fpm 6.750 5.060 orang per jam

40” ( 102 cm ) atau48” ( 122 cm )

90 fpm120fpm

8.100 10.800

8.100 orang per jam 8.100 orang per jam

Untuk keperluan peramcangan, kapasitas angkut tersebut diatas, dikurangi 25%, untuk memperhitungkan hilangnya space, akibat adanya orang-orang yang membawa barang belanjaan, tas kantor atau barang lainnya.

2.2 KEBUTUHAN RUANG

Eskalator, harus ditempatkan sedemikian rupa sehingga mudah terlihat dari entrancebangunan, mudah dilihat kemana tujuannya dan mudah dicapai. Ruang kosong yang cukup ( lobby), perlu disediakan diawal dan diakhir (landing) dari eskalator, guna menampung orang yang akan / telah menggunakan eskalator.

Besarnya ruang ini perlu mendapat perhatian serius pada bangunan yang mempunyani trafik besar pada jam padat seperti misalnya; teater/bioskop, stadion olah raga, dan sekolah, sebab kepadatan yang terlalu tinggi (berdesakan) dapat membahayakan pengguna eskalator (menggunakan eskalator memerlukan keterampilan lebih tinggi dibanding menggunakan tangga).

Karena itu, untuk bangunan khusus seperti itu, perlu dipertimbangkan adanya tangga biasa disamping eskalator sebagai alat transportasi vertikal cadangan .pada ruang untuk landing, baik atas maupun bawah, harus dihubungkan dengan ruang terbuka, dimana para pemakai eskalator tersalurkan satu arah tanpa boleh mengubah arah. Dengan perkataan lain ruang untuk landing turun tidak dianjurkan untuk digunakan sebagai landing naik eskalator. Hal inilah yang menyebabkan timbulnya konfigurasi tipe crisscross dan paralel pada eskalator (landing naik dan landing turun pada arah berlawanan).Sebagai patokan perancangan, jarak bebas minimum dimuka eskalator adalah 2,4 m untuk berkecepatan 90 fpm; dan 3,5 m untuk yang berkecepatan 120 fpm.

2.3 KEAMANAN

Eskalator dianggap sangat aman. Semua permukaan balustrade dibuat halus; hand rail didesain sedemikian rupa sehingga kecil kemungkinan kejadian jari terjepit. Anak

Page 234: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 224

tangga dan pelat besi dibagian landing (disebut comb plate) didesain anti terpeleset dan tahan gangguan.

Motor/ mesin eskalator mempunyai rem yang dapat dioperasikan melalui tombol tekan atau otomatis beroperasi pada saat eskalator kelebihan beban atau kelabihan kecepatan. Rem darurat juga disediakan untuk kondisi khusus yaitu bila rantai utama mesin putus. Bila salah satu saja dari rem itu berkerja, maka eskalator akan berhenti total, dan eskalator berubah fungsi menjadi tangga biasa. Dan oleh karena itu ada kemungkinan pemakai eskalator terjebak (seperti pada elevator) maka sumber daya listrik darurat tidak diperlukan.

2.4 KONFIGURASI CRISSCROS DAN PARALEL

Konfigurasi eskalator yang umum digunakan dapat diklasifikasikan sebagai berikut:

KONFIGURASI SUSUNAN / LETAKCrisscross a. berdampingan

b. terpisahParalel c. berdampingan

d. terpisah

Kedua kofigurasi tersebut diatas dapat dirancang agar bagian naik terpisah jauh dari bagian turun, sehingga didapat sirkulasi berkeliling, yang menguntungkan bagi pertokoan. Biasanya didaerah ini diletakkan display barang-barang yang menarik (impulse-buying merchandise). Kelemahannya adalah membuat capai pengunjung terutama yang membawa barang belanjaan. Konfigurasi crisscross, dianggap paling ekonomis karena membutuhkan ruang paling kecil. Konfigurasi paralel, kurang efisien dan lebih mahal, tetapi mempunyai penampilan yang imprensif, menarik orang untuk menggunakan.

Page 235: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 225

Gambar 6.30 . konfigurasi parallel

Gambar 6.31 . konfigurasi parallel

2.5 DESAIN ESKALATORDesain produk eskalator dapat dikategorikan menjadi 2 kelompok :

A. Eskalator dengan ‘desain konvensional’.

Page 236: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 226

Yaitu eskalator dengan mesin / motor penggerak yang diletakan dibagian atas eskalator. Motor tersebut dihubungkan/menggerakan tangga dibawahnya dengan bantuan rantai (seperti rantai sepeda) dan roda gigi. Eskalator jenis ini cocok untuk menghubungkan dua lantai yang berjarak lantai tidak lebih 7,5 m, lebih dari itu tidak dianggap efisien karena beban yang harus ditanggung semua komponen penggerak, termasuk rantainya melonjak secara drastis.

Disamping itu, bila jarak lantai lebih dari 7,5 m, motor penggerak menjadi sedemikian besar sehingga tidak mungkin lagi ditampung dalam truss (diperlukan ruang mesin terpisah), perlu penambahan dimensi tabung dari trussnya sendiri dan balok pendukung (L3, lihat gbr 7.32) ditengah bentangan eskalator. Dengan demikian penggunaan eskalator dengan desain konvensional terbatas; maksimum sampai jarak lantai 18,30 m.

Gambar 6.32. Eskalator dengan “ Desain Konvensional “ ; untuk jarak lantai antara 2,40 m – 18,30 m (maksimum)

B. Eskalator dengan ‘desain modular’.

Oleh sebab desain konvensional mempunyai keterbatasan, maka untuk mengatasinya, Westinghouse, sejak tahun 1973 mengembangkan dan memperkenalkan ‘modular eskalator’ untuk eskalator lebar 32”&48” yang dinyatakan ‘unlimited rise’. Kondisi tak terbatas tersebut dikarenakan penerapan sistem desain baru, yaitu penggunaan motor-motor tambahan disepanjang unit eskalator yang didistribusi secara modular. Dengan cara menyebarkan motor-motor disepanjang eskalator, maka mesin dan ruang

Page 237: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 227

mesin tunggal seperti pada sistem desain konvensional tidak diperlukan

lagi.Gambar 6.34. Modular Escalator, model 48”

Gambar 6.35. Mekanisme operasional “modular escalator”

Page 238: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 228

2.6 KOMPONEN UKURAN ESKALATOR2.6.1 Ukuran panjang eskalator

Gambar 6.36 Ukuran panjang eskalator

Jarak lantai “A”(finish to finish) - mm

Panjang total “B”(Jarak balok struktur ) - mm

3.000 9.9083.300 10.3353.600 10.8663.900 11.3964.200 11.9204.500 12.4484.800 12.9785.100 13.5065.400 14.0335.700 14.5606.000 15.088

2.6.2 Ukuran lebar eskalator

Page 239: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 229

Gambar 6. 37. Ukuran lebar eskalator (mm)

Model Unit tunggal Dua unit gandeng, paralel32” 48” 32”&32” 48”&48” 32 “&48”

X 81 cm 122 cm - - -Y 130 cm 170 cm 260 cm 340 cm 300 cmZ 130 cm 170 cm 260 cm 340 cm 300 cm

2.6.3 TrussTruss adalah kerangka struktural dari baja siku yang berfungsi mendukung

semua komponen eskalator, termasuk mesinnya.Panjang truss, tergantung pada tinggi / jarak lantai bangunan. Sudut kemiringan truss, tentunya sesuai dengan sudut kemiringan eskalator yaitu 30 derajat.

Gambar 6. 38. Truss, yang merupakan tabung rangka baja 3 mukaUjung bawah atau truss, ditumpukan pada balok-balok struktur bangunan yang mungkin dibuat dari beton atau baja dengan detail tumpuan.

Page 240: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 230

Gambar 6.39. Detail tumpuan truss (mm)

2.6.4 Motor penggerak dan kontrol

Gambar 6. 40. Motor Gambar 6. 41. Panel ontrol

Diletakkan sedekat mungkin dengan motor

Hubungan besar daya motor dengan model eskalator MODEL

ESKALATORKECEPATAN

(fpm)JARAK

LANTAI (m)DAYA MOTOR

(hp)32” 90 / 120 4,20 5,0

90 / 120 5,10 7,548” 90 5,10 7,5

90 6,30 10,090 / 120 7,50 15,0

Page 241: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 231

2.6.5 Hand rail

Gambar 6. 42. detail potongan handrail dengan pelat penutup

Gambar 6. 43. Mekanisme gerak handrail

Gerak dan kecepatan handrail harus sinkron dengan kecepatan tangga yaitu 90 atau 120 fpm

Page 242: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 232

2.6.6 Tangga

Gambar 6.44. Mekanisme gerak tangga

Page 243: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 233

SOAL LATIHAN1. Kriteria kualitas pelayanan elevator adalah, kecuali

a. Waktu menunggu (Interval, Waiting time)b. Daya angkut (Handling capacity)c. Waktu perjalanan bolak-balik lift (Round trip time)d. Serba otomatis, dan mempunyai interior yang menarik

2. Alat pengaman elevator adalaha. Rem, centrifugal fly ball, buffer tipe pegas/tipe hidraulis, final limit switchb. Rem, centrifugal fly ball, buffer tipe pegas/tipe hidraulis, final limit switch, kabel

penggantungc. Rem, centrifugal fly ball, buffer tipe pegas/tipe hidraulis, kabel penggantungd. Rem, centrifugal fly ball, buffer tipe pegas/tipe hidraulis, Geared traction machines

3. Apa yang dimaksud dengan centrifugal fly balla. Alat penyangga agar kabin tidak turun berlebihan (agar lantai kabin tetap sama

tinggi dengan lantai basement)b. alat yang digunakan untuk menjaga agar kecepatan gerak elevator tidak berlebihan

dari kecepatan yang telah ditetapkanc. alat yang dipasang dengan tujuan agar kabin tidak melampaui batas tempuh atas

maupun bawah jika kabin mencapi batas atas / bawah maka saklar ini tersentuh dan bekerja menghentikan daya motor traksi serta mengaktifkan rem utama.

d. Kabel penggantung sebagai media yang menanggung seluruh beban

4. Apa yang dimaksud dengan final limit switcha. Alat penyangga agar kabin tidak turun berlebihan (agar lantai kabin tetap sama

tinggi dengan lantai basement)b. alat yang digunakan untuk menjaga agar kecepatan gerak elevator tidak berlebihan

dari kecepatan yang telah ditetapkanc. alat yang dipasang dengan tujuan agar kabin tidak melampaui batas tempuh atas

maupun bawah jika kabin mencapi batas atas / bawah maka saklar ini tersentuh dan bekerja menghentikan daya motor traksi serta mengaktifkan rem utama.

d. Kabel penggantung sebagai media yang menanggung seluruh beban

5. Apa yang dimaksud dengan Sistem operasi elevatora. Alat penyangga agar kabin tidak turun berlebihan (agar lantai kabin tetap sama

tinggi dengan lantai basement)b. alat yang digunakan untuk menjaga agar kecepatan gerak elevator tidak berlebihan

dari kecepatan yang telah ditetapkanc. alat yang dipasang dengan tujuan agar kabin tidak melampaui batas tempuh atas

maupun bawah jika kabin mencapi batas atas / bawah maka saklar ini tersentuh dan bekerja menghentikan daya motor traksi serta mengaktifkan rem utama.

d. Sistem otomatis yang mengontrol semua gerak satu atau lebih elevator agar efisien dan nyaman bagi pemakainya,

Page 244: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Tranportasi Vertikal Dalam Bangunan 234

Kunci JawabanBAB I BAB II BAB III BAB VI

1. C 1. A 1. A 1. D2. B 2. D 2. A 2. A3. A 3. A 3. C 3. B4. B 4. A 4. A 4. C5. D 5. D 5. B 5. D6. B 6. 6. C 6.7. B 7. 7. C 7.8. D 8. 8. A 8.9. A 9. 9. D 9.10. A 10. 10. C 10.

Page 245: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

DAFTAR PUSTAKA 235

DAFTAR PUSTAKA

Arismunandar, Wiranto, Heizo Saioto, Penyegaran Udara, Bandung: Pradnya Paramita, 2001.

Agus Susanto, Paulus, Utilitas Bangunan, Universitas Parahyangan Bandung, 2005Bradshaw, Vaughn, Building Control System, New York, John Wiley, 1993Ching, Francis D.K. A Visual Dictionary of Architecture a Division of International,

New York: Thomson Publising Inc., 1995.Departeman Pekerjaan Umum : Peraturan-peraturan mengenai Utilitas Bangunan,

2006Dagostino R Frank Mechanical and Electrical Systems in Construction and

Architecture Third Edition,,Prentice Hall,Inc.,1995Guinness , Mc., Stein, Renolds, Mechanical & Electrical Equipment for Building,

New York : John Wiley & Sons, Inc. 1986Guide to Electrical Installation & Repair Book Two,Team,McGraw-Hill, Inc.,1998Morimura, Takeo & Soufayan M. Noerbambang, Perancangan dan Pemeliharaan

Sistem Plambing; Pradnya Paramita, 1988Poerba, Hartono, Utilitas Bangunan, Jakarta : Jambatan, 1992Departemen PU, Petunjuk Perencanaan Struktur Bangunan Untuk Pencegahan dan

penanggulangan Bahaya Kebakaran pada Bangunan Rumah dan GedungSKBI2362-1987.

Patterson, James ,Simplified Design for Building Fire Safety, ,John Wiley & Sons, Inc.,1993

Salvan,George S, Architectural Utilities 1, Plumbing & Sanitary, Quezon City; JMC Press , 1986

Roestanto, Ir. Perencanaan Utilitas Pada Bangunan Tinggi, WD,,1988Stein John, Benjamin, S. Reynolds, John, Mechanical and Electrical Equipment For Buildings 8 th Edition, Wiley & Sons, Inc

Tanggono, Dwi, Utilitas Bangunan, Jakarta : UI Pers, 2000Richard D Rush, The Building System Integration Handbook, , IAI,John Wiley &

Sons,Inc.,1986

Page 246: ebook.gunadarma.ac.idebook.gunadarma.ac.id/rekayasa/154/docs/(154) 16 AgungWahyudi...ebook.gunadarma.ac.id

Participation In Situ Pengasinan Conservation Effort To Create A Green Living PlaceYogyakarta, Juli 2013, Developing Green Open Space in Urban Maritime Residential AreasThrough Community Participation Approach

Karya Tulis ini merupakan bentuk sumbangsih ilmu arsitektur, yang diharapkan dapat memberikan kontribusi pada pemetaan arsitektur bangunan dan lingkungan di Indonesia

Utilitas Bangunan

TENTANG PENULIS

Agung Wahyudi Lulus S1 Teknik Arsitektur Universitas Gunadarma pada tahun 2001 kemudian mengambil master di Jurusan Magister Arsiterktur Kota di Universitas Katolik Parahyangan Bandung lulus pada tahun 2004. Saat ini sedang menempuh Program Doktor di Program Doktor Teknik Arsitektur dan Perkotaan di Universitas Diponegoro Semarang. Beberapa Penelitian yang dilakukan kemudian di seminarkan antara lain

Participation In Situ Pengasinan Conservation Effort To Create A Green Living PlaceDeveloping Green Open Space in Urban Maritime Residential Areas

Through Community Participation Approach di Unhas Maakasar, September 2013

Karya Tulis ini merupakan bentuk sumbangsih ilmu arsitektur, yang diharapkan dapat busi pada pemetaan arsitektur bangunan dan lingkungan di Indonesia

Jakarta, September

Agung Wahyudi, ST., MT

Bangunan iii

TENTANG PENULIS

Agung Wahyudi Lulus S1 Teknik Arsitektur Universitas Gunadarma pada tahun 2001 kemudian mengambil master di Jurusan Magister Arsiterktur Kota di Universitas Katolik Parahyangan Bandung lulus pada tahun 2004. Saat ini sedang menempuh

am Doktor Teknik Arsitektur dan Perkotaan di Universitas Diponegoro Semarang. Beberapa Penelitian yang dilakukan kemudian di seminarkan antara lain Community

Participation In Situ Pengasinan Conservation Effort To Create A Green Living Place di UII Developing Green Open Space in Urban Maritime Residential Areas

di Unhas Maakasar, September 2013

Karya Tulis ini merupakan bentuk sumbangsih ilmu arsitektur, yang diharapkan dapat busi pada pemetaan arsitektur bangunan dan lingkungan di Indonesia

September 2013

Agung Wahyudi, ST., MT


Related Documents