Top Banner

of 30

Prinsip Kerja Mesin Pendingin

Jul 19, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

BAB II Prinsip Kerja Mesin PendinginA. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri. Siklus pendinginan absorbsi mirip dengan siklus pendinginan kompresi uap. Perbedaan utama kedua siklus tersebut adalah gaya yang menyebabkan terjadinya perbedaan tekanan antara tekanan penguapan dan tekanan kondensasi serta cara perpindahan uap dari wilayah bertekanan rendah ke wilayah bertekanan tinggi. Pada sistem pendingin kompresi uap digunakan kompresor, sedangkan pada sistem pendingin absorbsi digunakan absorber dan generator. Uap

bertekanan rendah diserap di absorber, tekanan ditingkatkan dengan pompa dan pemberian panas di generator sehingga absorber dan generator dapat menggantikan fungsi kompresor secara mutlak. Untuk melakukan proses

kompresi tersebut, sistem pendingin kompresi uap memerlukan masukan kerja mekanik sedangkan sistem pendingin absorbsi memerlukan masukan energi panas. Oleh sebab itu, siklus kompresi uap sering disebut sebagai siklus yang digerakkan dengan kerja (W O R K - O PE R A TE D ) dan siklus absorbsi disebut sebagai siklus yang digerakkan dengan panas (HE A TOPE R A T E D ).

Gambar 1

menunjukkan persamaan dan perbedaan antara siklus kompresi uap dengan siklus absorbsi.

23

Salah satu keunggulan sistim absorbsi adalah karena menggunakan panas sebagai energi penggerak. Panas sering disebut sebagai energi tingkat rendah (low level energy) karena panas merupakan hasil akhir dari perubahan energi dan sering kali tidak didaur ulang. Pemberian panas dapat dilakukan dengan berbagai cara, seperti menggunakan kolektor surya, biomassa, limbah, atau dengan boiler yang menggunakan energi komersial.

1. Prinsip Kerja Siklus Absorbsi Dasar siklus absorbsi disajikan pada gambar 2. Pada gambar ditunjukkan adanya dua tingkat tekanan yang bekerja pada sistem, yaitu tekanan rendah yang meliputi proses penguapan (di evaporator) dan penyerapan (di absorber), dan tekanan tinggi yang meliputi proses pembentukan uap (di generator) dan pengembunan (di kondensor). Siklus absorbsi juga menggunakan dua jenis zat yang umumnya berbeda, zat pertama disebut penyerap sedangkan yang kedua disebut refrigeran. Selanjutnya, efek pendinginan yang terjadi merupakan akibat dari kombinasi proses pengembunan dan penguapan kedua zat pada kedua tingkat tekanan tersebut. Proses yang terjadi di evaporator dan kondensor sama dengan pada siklus kompresi uap

24

Kerja siklus secara keseluruhan adalah sebagai berikut : Proses 1-2/1-3 : Larutan encer campuran zat penyerap dengan refrigeran (konsentrasi zat penyerap rendah) masuk ke generator pada tekanan tinggi. Di generator panas dari sumber bersuhu tinggi ditambahkan untuk menguapkan dan memisahkan refrigeran dari zat penyerap, sehingga terdapat uap refrigeran dan larutan pekat zat penyerap. Larutan pekat campuran zat penyerap mengalir ke absorber dan uap refrigeran mengalir ke kondensor. Proses 2-7 : Larutan pekat campuran zat penyerap dengan refrigeran (konsentrasi zat penyerap tinggi) kembali ke absorber melalui katup cekik. Penggunaan katup cekik bertujuan untuk

mempertahankan perbedaan tekanan antara generator dan absorber. Proses 3-4 : Di kondensor, uap refrigeran bertekanan dan bersuhu tinggi diembunkan, panas dilepas ke lingkungan, dan terjadi perubahan fase refrigeran dari uap ke cair. Dari kondensor dihasilkan refrigeran cair bertekanan tinggi dan bersuhu rendah. Proses 4-5 : Tekanan tinggi refrigeran cair diturunkan dengan

menggunakan katup cekik (katup ekspansi) dan dihasilkan refrigeran cair bertekanan dan bersuhu rendah yang

selanjutnya dialirkan ke evaporator. Proses 5-6 : Di evaporator, refrigeran cair mengambil panas dari

lingkungan yang akan didinginkan dan menguap sehingga terjadi uap refrigeran bertekanan rendah. Proses 6-8/7-8 : Uap refrigeran dari evaporator diserap oleh larutan pekat zat penyerap di absorber dan membentuk larutan encer zat penyerap. Jika proses penyerapan tersebut terjadi secara adiabatik, terjadi peningkatan suhu campuran larutan yang pada gilirannya akan menyebabkan proses penyerapan uap terhenti. Agar proses penyerapan berlangsung terus-menerus,

25

absorber didinginkan dengan air yang mengambil dan melepaskan panas tersebut ke lingkungan. Proses 8-1 : Pompa menerima larutan cair bertekanan rendah dari absorber, meningkatkan tekanannya, dan mengalirkannya ke generator sehingga proses berulang secara terus menerus

2. Kombinasi Refrigeran Absorber pada Sistem Pendinginan Absorbsi Terdapat beberapa kriteria yang harus dipenuhi oleh kombinasi refrigeran dengan zat penyerap untuk layak digunakan pada mesin pendingin absorbsi. Diantaranya adalah : a. Zat penyerap harus mempunyai nilai afinitas (pertalian) yang kuat dengan uap refrigeran, dan keduanya harus mempunyai daya larut yang baik pada kisaran suhu kerja yang diinginkan. b. Kedua cairan tersebut, baik masing-masing maupun hasil campurannya, harus aman, stabil, dan tidak korosif. c. Secara ideal, kemampuan penguapan zat penyerap harus lebih rendah dari refrigeran sehingga refrigeran yang meninggalkan generator tidak mengandung zat penyerap d. Refrigeran harus mempunyai panas laten penguapan yang cukup tinggi sehingga laju aliran refrigeran yang harus dicapai tidak terlalu tinggi e. Tekanan kerja kedua zat harus cukup rendah (mendekati tekanan atmosfir) untuk mengurangi berat alat dan menghindari kebocoran ke lingkungannya

Saat ini, terdapat dua kombinasi refrigeran-zat penyerap yang umum digunakan, yaitu air-litium bromida (H2O-LiBr) dan amonia-air (NH3-H2O). Pada kombinasi pertama, air bertindak sebagai refrigeran dan litium bromida sebagai zat penyerap, sedang pada kombinasi kedua, amonia bertindak sebagai refrigeran dan air sebagai zat penyerap. 1) Sistem Litium Bromida air Sistem litium bromida-air banyak digunakan untuk pengkondisian udara dimana suhu evaporasi berada di atas 0 C. Litium Bromida (LiBr) adalah suatu kristal garam padat, yang dapat menyerap uap air. Larutan

26

cair yang terjadi memberi tekanan uap yang merupakan fungsi suhu dan konsentrasi larutan. Hubungan antara entalpi dengan persentase Litium-Bromida dalam larutan LiBr pada berbagai suhu larutan. Proses terjadi kristalisasi larutan LiBr-H2O, yaitu pada keadaan yang mana larutan mengalami pemadatan. Proses yang terjadi pada wilayah melewati batas kristalisasi akan mengakibatkan pembentukan lumpur padat dan penyumbatan sehingga mengganggu aliran di dalam pipa. 2) Sistem Air Amonia Sistem amonia-air digunakan secara luas untuk mesin pendingin berskala kecil (perumahan) maupun industri, yang mana suhu evaporasi yang dibutuhkan mendekati atau di bawah 0 C. Sistem amonia-air mempunyai hampir seluruh kriteria yang diperlukan di atas, kecuali bahwa zat-zat tersebut dapat bersifat korosif terhadap tembaga dan alloynya, serta sifat amonia yang sedikit beracun sehingga membatasi penggunaannya untuk pengkondisian udara. Kelemahan sistem amonia-air yang paling utama adalah air yang juga mudah menguap sehingga amonia yang berfungsi sebagai refrigeran masih mengandung uap air pada saat keluar dari generator dan masuk ke evaporator melalui kondensor. Keadaan ini dapat menyebabkan uap air meninggalkan panas di evaporator dan meningkatkan suhunya sehingga menurunkan efek pendinginan. Untuk menghindari hal itu, mesin

pendingin absorbsi dengan sistem amonia-air umumnya dilengkapi denganR E C T I FI E R

dan A N AL Y ZE R , seperti ditunjukkan pada Gambar 3.

27

Amonia yang masih mengandung uap air dari generator melaluiR E C T I FI E R ,

suatu mekanisma yang bekerja seperti kondenser akibatA NA L Y ZE R .

adanya arus balik uap air dari

Di sini, uap air yang

mempunyai suhu jenuh yang lebih tinggi diembunkan dan dikembalikan ke generator. Selanjutnya amonia dan sejumlah kecil uap air diteruskan keA N A L Y ZE R ,

dimana uap air dan sebagian kecil amonia diembunkan danRE CT I FI E R ,

dikembalikan ke generator melalui diteruskan ke kondensor.

sedangkan amonia

A NAL Y ZE R pada prinsipnya adalah suatu

kolom distilasi, yang umumnya menggunakan air pendingin dari kondensor sebagai media pendingin. Untuk dapat menghitung penampilan panas di dalam siklus pendinginan absorbsi maka diperlukan data entalpi tiap kombinasi refrigeran-zat penyerap yang digunakan. Perlu diperhatikan bahwa pada diagram tersebut konsentrasi yang ditunjukkan adalah konsentrasi NH3 di dalam larutan NH3-H2O, meskipun dalam hal ini amonia berfungsi sebagai refrigeran dan air sebagai zat penyerap.

3. SISTEM KERJA Sistem absorbsi menyerap uap tekanan rendah dari evaporator ke dalam zat cair penguap (absorbing liquid) yang cocok pada absorber. Pada komponen ini terjadi perubahan fasa dari uap menjadi cair, karena proses ini sama dengan kondensasi, maka selama proses berlangsung terjadi pelepasan kalor. Tahap berikutnya adalah menaikan tekanan zat cair tersebut dengan pompa dan membebaskan uap dari zat cair penyerap dengan pemberian kalor. Pada sistem kompresi uap, siklus yang terjadi dioperasikan oleh kerja (work-operated cycle) karena kenaikan tekanan refrigeran pada saluran discharge dilakukan oleh kompresor. Sedangkan pada sistem absorbsi, siklusnya dioperasikan oleh kalor (heat-operated cycle) karena hampir sebagian besar operasi berkaitan dengan pemberian kalor untuk melepaskan uap refrigeran dari zat cair yang bertekanan tinggi pada generator. Sebenarnya pada sistem ini juga membutuhkan kerja atau usaha untuk menggerakan pompa namun relatif lebih kecil dibandingkan dengan sistem kompresi uap.

28

Generator menerima kalor dan membuat uap refrigeran terpisah dari absorbentnya menuju ke kondensor, sementara absorben akan kembali menuju absorber melalui katup trotel. Pada kondensor terjadi pelepasan kalor ke lingkungan sehingga fasa refrigeran berubah dari uap superheat menjadi cair. Selanjutnya refrigeran mengalami penurunan tekanan dan temperatur secara adiabatis pada katup ekspansi sehingga ketika memasuki evaporator

temperaturnya akan berada di bawah temperatur lingkungan. Pada komponen evaporator inilah terjadi proses pendinginan suatu produk dimana kalornya diserap oleh refrigeran untuk selanjutnya menuju absorber. Contoh pasangan refrigeran dengan absorbennya adalah air dan LiBr (Litium Bromida) serta NH3 (amonia) dan air. Sistem ini hampir sama dalam beberapa hal dengan siklus kompresi uap seperti adanya komponen kondensor, katup ekspansi dan evaporator.

Perbedaannya adalah tidak adanya kompresor pada sistem absorbsi digantikan dengan tiga komponen lain diantaranya absorber, pompa dan generator.

B.

Sistem Pendingin Kompresi Siklus pendingin kompresi uap merupakan system yang banyak

digunakan dalam system refrigrasi, pada sistem ini terjadi proses kompresi, pengembunan, ekspansi dan penguapan. Secara skematik system

ditunjukkan pada gambar 4 dibawah ini :

29

Kompresi mengisap uap refrigerant dari sisi keluar evaporator ini, tekanan diusahakan tetap rendah agar refrigerant senantiasa berada dalam fasa gas dan bertemperatur rendah. Didalam kompresor uap refrigerant ditekan sehingga tekanan dan temperature tinggi untuk menghindarkan terjadinya kondensasi

dengan membuang energy kelingkungan. Energi yang diperlukan untuk proses komporesi diberikana oloh motor listrik atau penggerak mula lainnya. Jadi dalam proses kompresi energy diberikan kepada uap refrigerant. Pada waktu uap refrigerant diisap masuk kedalam kompresor temperature masih tetap rendah akan tetapi ketika selama proses kompresi berlangsung temperature dan tekanannya naik. Setelah mengalami proses komopresi, uap refrigerant berkerja (fluida kerja ) mengalami proses kondensasi pada kondensor. Uap refrigerant yang bertekanan dan bertemperatur tinggi pada akhirnya kompresi dapat dengan mudah dengan mendinginkannya melalui fluida cair dan udara. Dengan kata lain uap refrigerant memberikan panasnya kepada air pendingin atau udara pendingin melalui dinding kondensor. Jadi dikarena air pendingin atau udara pendingin menyerap panas dari refrigerant maka temperaturnya menjadi tinggi pada waktu keluar dari kondensor. Selama refrigerant mengalami perubahan dari fasa uap ke fasa cair tekanan dan temperature konstan. Untuk menurunkan tekanan refrigaran cair dari kondensor kita gunakan katup expansi atau pipa kapiler, alat tersebut dirancang untuk suatu penurunan tekanan tertentu. Melalui katup expansi refrigerant mengalami evaporasi yaitu proses penguapan cairan refrigerant pada tekanan dan temperature rendah, proses ini terjadi pada evaporator. Seelama proses evaporasi refrigerant memerlukan atau mengambil bentuk energy panas dari lingkungan atau sekelilingnya sehingga temperature sekeliling turun dan terjadi prose pendinginan. Untuk memahami proses proses yang terjadi pada mesin pendingin

kompresi uap, diperlukan pembahasan siklus termodinamika yang digunakan. Pembahasan diawali dengan daur carnot yang merupakan daur ideal hingga daur kompresi uap nyata.

30

1. Daur Carnot Daur carnot adalah daur reversible yang didefinisikan oleh dua proses isothermal dan dua proses isentropic. Karena proses reversible dan adiabatic, maka perpindahan panas hanya terjadi selama proses isothermal. Dari kajian thermodinamika, daur carnot di kenal dengan sebagai mesin kalor carnot yang menerima energy kalor pada suhu tinggi, sebagian diubah menjadi kerja dan sisanya dikeluarkan sebagai kalor pada suhu rendah. Apabila daur mesin kalor carnor dibalik, yaitu proses pengembalian panas dari daerah yang bersuhu rendah ke daerah yang bersuhu tinggi. Skematis peralatan dan diagram T S daur refrigerasi carnot :

Keteranagan proses : 1 2 : kompresi adiabatic 2 3 : pelepasan panas isothermal 3 4 : ekspansi adiabatic 4 -1 : pemasukan panas isothermal

31

2. Daur Kompresi Uap Ideal Apabila daur carnot diterapakan pada kompresi uap, maka seluruh proses akan terjadi dalam fasa campuran. Untuk itu fluida kerja yang masuk kompresor diusahakan tidak berupa campuran, yang tujuannya mencegah kerusakan. Pada daur carnot ekspansi isentropic terjadi pada turbin, daya yang dihasilkan digunakan untuk mengerakkan kompresor. Dalam hal ini mengalami suatu kesulitan teknis, maka untuk memperbaikinya digunakan katup ekspansi atau pipa kapiler dengan demikian proses berlangsung pada entalpi konstan.

Gambar daur kompresi uap ideal

Dimana : 12 : kompresi adiabatic dan reversible, dari uap jenuh menuju tekana konstan 2 -3 : pelepasan kalor reverseibel pada tekanan konstan, menyebabkan penurunan panas lanjut dan pengembunan refrigerant. 34 : ekspansi irreversible pada entalpi

konstan,dari cairan jenuh menuju tekanan evaporator.

32

41

: penambahan kalor reversible pada tekanan tetap yang menyebabkan penguapan

menuju uap jenuh. 3. Daur Kompresi Uap Nyata Daur kompresi uap nyata mengalami pengurangan efisiensi dibandingkan dengan daur uap standart. Pada daur kompresi uap nyata proses kompresi berlangsung tidak isentropic, selam fluida berkerja melewati evaporator dan kondensor akan mengalami penurunan tekanan. Fluida kerja mendinginkan kondensor dalam keadaan sub dingin dan meninggalkan evaporator dalam keadaan panas lanjut. Penyimpangan daur kompresi uap nyata dari daur uap ideal dapat diperhatikan gambar dibawah ini :

Gambar perbandingan antara siklus kompresi uap standart dan nyata. Pada daur kompresi uap nyata preses kompresi berlangsung tidak isentropic, hal ini disebabakan adanya kerugian mekanis dan pengaruh suhu lingkungan selama prose kompresi. Gesekan dan belokan pipa menyebebkan penurunan tekanan di dalam alat penukar panas sebagai akibatnya kompresi pada titik 1 menuju titik 2 memerlukan lebih banyak kerja dibandingkan dengan daur ideal (standart). Untuk menjamin seluruh refrigerant dalam keadaan cair dalam sewaktu memasuki alat ekspansi diusahakan refrigerant meniggalkan kondensor dalam keadaan sub dingin. Kondisi panas

33

lanjut yang meninggalkan evaporator disarankan untuk mencegah kerusakan kompresor akibat terisap cairan.

4. BAGIAN-BAGIAN PENTING MESIN PENDINGIN a. KOMPRESOR Kompresor memompa bahan pendingin ke seluruh sistem. Gunanya adalah untuk menghisap gas tekanan rendah dan suhu terendah dari evaporator dan kemudian menekan/ memampatkan gas tersebut, sehingga menjadi gas dengan tekanan dan suhu tinggi, lalu dialirkan ke kondensor. Jadi kerja kompresor adalah untuk 1) Menurunkan tekanan di evaporator, sehingga bahan pendingin cair di evaporator dapat menguap pada suhu yang lebih rendah dan menyerap lebih banyak panas dari sekitarnya. 2) Menghisap gas bahan pendingin dari evaporator, lalu menaikkan tekanan dan suhu gas bahan pendingin tersebut, dan mengalirkannya ke

kondensor sehingga gas tersebut dapat mengembun dan memberikan panasnya pada medium yang mendinginkan kondensor. Ada tiga macam kompresor yang banyak dipakai pada mesinmesin pendingin yaitu : 1. Kompresor Torak, kompresinya dikerjakan oleh torak. 2. Kompresor Rotasi, kompresinya dikerjakan oleh blade atau vane dan roller 3. Kompresor Centrifugal, kompresor centrifugal tidak mempunyai alat-alat tersebut, kompresi timbul akibat

34

gaya centrifugal yang terjadi karena gas diputar oleh putaran yang tinggi kecepatannya dan impeller. Ketiga macam kompresor mempunyai keunggulan masingmasing. Pemakaiannya ditentukan oleh besarnya kapasitas, penggunaannya, instalasinya dan jenis bahan pendingin yang dipakai. b. KONDENSOR Kondensor adalah suatu alat untuk merubah bahan pendingin dari bentuk gas menjadi cair. Bahan pendingin dari kompresor dengan suhu dan tekanan tinggi, panasnya keluar melalui permukaan rusuk-rusuk kondensor ke udara. Sebagai akibat dari kehilangan panas, bahan pendingin gas mula-mula didinginkan menjadi gas jenuh, kemudian mengembun berubah menjadi cair. c. EVAPORATOR Evaporator adalah suatu alat dimana bahan pendingin menguap dari cair menjadi gas. Melalui perpindahan panas dari dinding dindingnya, mengambil panas dari ruangan di sekitarnya ke dalam sistem, panas tersebut lalu di bawa ke kompresor dan dikeluarkan lagi oleh kondensor. d. SARINGAN Saringan untuk AC dibuat dari pipa tembaga berguna untuk menyaring kotoran-kotoran di dalam sistem, seperti : potongan timah, lumpur, karat, dan kotoran lainnya agar tidak masuk ke dalam pipa kapiler atau keran ekspansi. Saringan harus menyaring semua kotoran di dalam sistem, tetapi tidak boleh menyebabkan penurunan tekanan atau membuat sistem menjadi buntu.

35

e. PIPA KAPILER Pipa kapiler gunanya adalah untuk : 1) Menurunkan tekanan bahan pendingin cair yang mengalir di dalam pipa tersebut. 2) Mengontrol atau mengatur jumlah bahan pendingin cair yang mengalir dari sisi tekanan tinggi ke sisi tekanan rendah. f. KERAN EKSPANSI Keran ekspansi ada 2 macam 1) Automatic Expasion Valve 2) Thermostatic Expansion Valve Thermostatic Exspansion Valve lebih baik dan lebih banyak dipakai, tetapi pada AC hanya dipakai automatic expansion valve, maka disini kita hanya akan

membicarakan automatic expansion valve saja. Gunanya untuk menurunkan cairan dan tekanan tekanan evaporator dalam batas-batas yang telah di tentukan dengan

mengalirkan cairan bahan pendingin dalam jumlah yang tertentu ke dalam evaporator.

36

HAND OUTA. Identitas Mata Kuliah

Mata Kuliah : Teknik Pendingin Kode Mata Kuliah : ELE 3506 Semester : V Bobot : 2 sks Prasyarat : Instalasi TenagaB. Standar Kompetensi : Mahasiswa menguasai konsep-konsep dasar teknik pendingin, mulai darisejarah, jenis,dan tipe mesin pendingin, dapat memahami dasar-dasar mesin pendingin, memahami hukum dasar termodinamika, diagram garis Molier, dan siklus pendinginan , memahami bagian-bagian penting mesin pendingin, memahami alat-alat listrik pada AC, memahami perhitungan beban pada mesin pendingin, dan memahami prinsip kerja mesin pendingin C. Kompetensi Dasar :

1. Mahasiswa memahami tentang sejarah pendingin 2. Mahasiswa memahami jenis dan tipe pendingin 3. Mahasiswa memahami Jenis-jenis Mesin Pendingin 4. Mahasiswa memahami Proses Dasar Terjadinya Dingin 5. Mahasiswa bisa memahami Terjadinya Dingin Pada Ruang mesin 6. Mahasiswa bisa memahami Istilah istilah Teknik di Bidang Pendinginan 7. Mahasiswa memahami Hukum Dasar Termodinamika 8. Mahasiswa memahami Diagram Garis Molier dan Siklus Pendinginan 9. Mahasiswa memahami Bagian bagian Mesin Pendingin 10. Mahasiswa memahami Alat-alat Listrik Pada AC 11. Mahasiswa memahami Prinsip Kerja Lemari ES 12. Mahasiswa memahami Prinsip Kerja Air Conditioner (AC)D. Materi37

BAB I PENDAHULUAN 1.1 SEJARAHNYA Pada awalnya untuk pengawetan makanan digunakan es atau salju sejak 1000 tahun sebelum masehi. Pada tahun 1850 mulai dipakai mesin pendingin yang memakai kompressor dengan bahan pendingin udara. Kemudian dipakai bahan pendingin amonia, keburukannya beracun, sampai akhirnya di temukan bahan pendingin freon yang lebih aman dan digunakan sampai sekarang. 1.2 Jenis dan Tipe Mesin pendingin Jenis dan tipe mesin pendingin disesuaikan dengan kegunaan dan daya yang dimilikinya. Misalnya AC untuk kantor-kantor besar berbeda dengan AC untuk rumah tangga. Begitu juga untuk jenis kulkas.Karena di pasaran sudah tersedia berbagai jenis dan tipe mesin pendingin. 1.2.1 Jenis-jenis Mesin Pendingin Dari berbagai mesin pendingin yang ada, serta ditinjau dari segi kegunaan dan fungsinya, yang umum kita kenal ada 4 macam mesin pendingin, antara lain : 1.2.1.1 Refrigerant Jenis ini lebih dikenal dengan sebutan kulkas atau lemari es. Tipe dan kapasitasnya bermacam-macam, dan umumnya digunakan untuk rumah tangga. Fungsinya untuk mendinginkan minuman, mengawetkan bahan makanan, menhasilkan es. Suhu untuk lemari es dipertahankan 3o -100 C 1.2.1.2 Freezer Jenis yang satu ini tidak berbeda dengan kulkas, hanya saja kapasitas lebih besar, dan suhunya lebih rendah.

38

1.2.1.3 Air Conditioner (AC) Manusia selalu berusaha untuk membuat keadaan disekelilingnya menjadi lebih baik dan suasana lebih nyaman. Air Conditioner adalah salah satu yang dapat memenuhi kebutuhan itu. Dengan membuat keadaan menjadi lebih sejuk. Sesuai dengan namanya air conditioner berarti pengatur udara diperlukan sekurangnya 3 peraturan a. Suhu udara Adalah derajat panas atau dingin dari udara yang diukur dengan thermo-meter. Udara harus didinginkan untuk membuat suhu di dalam ruangan menjadi sejuk. Suhu kamar yang sejuk dan nyaman adalah 240 270 C b. Kelembaban Untuk mendapatkan udara yang sejuk dan nyaman di dalam ruangan, kita harus mengatur kelembaban udara dengan mengambil uap air dari udara atau menambahkan uap air pada udara yang mengalir di dalam ruangan. Jumlah uap air di dalam udara dinyatakan dengan %. Jadi AC selain dapat menyejukkan udara juga dapat membersihkan udara yang ada dalam ruangan. AC rumah tangga dapat dioperasikan dengan listrik satu phase pada 110 Volt atau 220 Volt. Kapasitas mulai 4.000 s/d 25.000 BTU/h. 1.2.1.4 Kipas Angin Walaupun pada dasarnya peralatan yang satu ini tidak menghasilkan udara atau suhu yang dingin sebagaimana kulkas atau AC, tetapi putaran dan sistem kerjanya mirip dengan kerja dari kedua peralatan diatas. BAB II DASAR DASAR MESIN PENDINGIN 2.1 Proses Dasar Terjadinya Dingin

39

Dingin merupakan hasil yang diciptakan oleh mesin pendingin terutama kulkas dan freezer. Sedangkan AC lebih ke keadaan sejuk. Proses terjadinya pendinginan yang diciptakan oleh mesin pendingin sebenarnya merupakan tiruan terjadinya dinginyang disebabkan oleh alam. Dan dingin sebenarnya merupakan suatu proses penguapan karena adanya panas akan menimbulkan udara dingin disekitarnya. Dingin terjadi karena adanya penguapan, dan penguapan berlangsung karena adanya panas. 2.2 Terjadinya Dingin Pada Ruang mesin Proses dingin di dalam mesin pendingin karena adanya pemindahan panas. Setiap mesin pendingin mampu menghasilkan suhu dingin dengan cara menyerap panas dari udara yang ada dalam ruang pada mesin pendingin itu sendiri. Bahan yang digunakan untuk menghasilkan penguapan yang begitu cepat sehingga mampu menghasilkan udara dingin. Biasanya untuk keperluan ini digunakan gas Freon. Gas ini dalam sistem pendinginan memiliki bentuk yang berubah-ubah, yaitu dari bentuk cairan menjadi bentuk gas (uap). Pada kompresor, gas yang telah berubah menjadi uap tadi takanan dan panasnya dinaikkan untuk selanjutnya uap panas yan berasal dari gas itu diturunkan atau didinginkan pada bagian kondensor sampai membentuk cairan. Kemudian sesampainya pada evaporator cairan itu diturunkan tekanannya sehingga menguap dan menyerap panas yang ada di sekitarnya. Kemudian dalam bentuk uap refrigerant tadi dihisap kembali oleh bagian kompresor dan dikeluarkan lagi seperti semula. Proses seperti ini berlangsung secara berulang. Dalam sistem mesin pendingin jumlah refrigerant yang digunakan adalah tetap, yang berubah adalah bentuknya karena adanya proses seperti diatas. 2.3 Istilah istilah Teknik di Bidang Pendinginan 2.3.1 Tekanan Tekanan ialah gaya yang bekerja secara vertikal pada bidang datar luas 1 cm 2, oleh benda padat, cair atau gas. Pada umumnya satuannya kg/cm2.

40

2.3.2 Temperatur / Suhu Suhu adalah derajat panas atau tingkat kedinginan. Ukuran suhu dinyatakan dengan angka dan angka ini disebut derajat seperti 0C (derajat Celcius), 0F(derajat Fahrenheit) 2.3.3 Kalor (Panas) Kalor adalah energi yang diterima oleh benda, sehingga suhu benda atau wujudnya berubah. Jika kalor dilepaskan suhu benda akan turun. Kalor adalah suatu bentuk energi yang dapat dipindahkan, tetapi tidak dapat dihilangkan. Kalor dapat diukur meskipun kita tidak melihatnya. Satuan dari kalor joule (J), Kalori , BTU. 2.3.4 Kalor Jenis Kalor jenis suatu zat ialah jumlah kalor yang diperlukan untuk menaikkan suhu 1 kilo zat itu sebesar 10K atau satu derajat Kelvin. Bilangan kalor jenis dinyatakan dengan satuan K Cal/Kg 0C. 2.3.5 Panas Bebas Umumnya, apabila memanaskan atau mendinginkan suatu benda, suhu dari benda tersebut mengalami perubahan. Panas yang mempengaruhi langsung pada suatu benda demikian disebut panas bebas. 2.3.6 Kalor Laten Panas yang diperlukan untuk mengubah wujud zat dari padat menjadi cair, dan cair menjadi gas atau sebaliknya tanpa mengubah suhunya disebut kalor laten (panas laten). Satuan Kalor Laten : Joule, Kalori, BTU, 2.3.7 Kalor Sensibel Kalor sensibel adalah jumlah kalor yang diperlukan untuk menaikkan atau menurunkan suhu suatu benda. Satuan dalam : Joule, Kalori, atau BTU.

41

2.3.8 Massa Jenis Massa sebuah benda banyaknya zat atau materi yang dikandung suatu benda satuan Kg. Massa Jenis suatu zat ialah massa zat itu dibagi volumenya pada 00C. satuannya Kg/m3, Kg/l. 2.3.9 Bahan Pendingin (Refrigerant) Refrigerant adalah suatu zat yang mudah menguap dan berfungsi sebagai penghantar panas dalam sirkulasi pada saluran instalasi mesin pendingin. Bahan pendingin (refrigerant) adalah suatu zat yang mudah berubah wujud dari gas menjadi cair atau sebaliknya. Dapat mengambil panas dari evaporator dan membuangnya di kondensor. Untuk instalasi Refrigerator/kulkas, AC dipakai freon R-12 atau R-22 sebagai refrigerant. 2.3.10 Effek Pendinginan Adalah kemampuan membawa kalor dari bahan pendingin atau jumlah kalor yang dapat diserap oleh 1 pound bahan pendingin waktu mulai evaporator. Satuannya dalam K Cal/Kg. 2.3.11 Kapasitas Pendinginan Untuk menyatakan efek pendinginan, banyaknya kalori panas yang di serap dalam satuan waktu dinyatakan dengan K Cal/Jam. 2.3.12 Frost Bila kita mendinginkan udara terus-menerus, volume uap air dalam udara menjadi kecil, dan sebagian uap air yang menyentuh pada permukaan suatu benda yang rendah suhunya akan berbentuk embun-es yang halus. Peristiwa demikian disebut Frost. 2.3.13 Dingin

42

Dingin adalah suhunya rendah atau tidak ada panas. Dingin adalah akibat dari pengambilan kalor. Lemari es menghasilkan dingin dengan mengambil kalori dari bagian dalamnya. Lemari es tidak dapat menghilangkan kalor, tetapi dapat memindahkan melalui bahan pendingin. 2.3.14 Tekanan Maksimum, Temperatur Maksimum Benda gas seperti freon, bila di beri tekanan dalam silinder tertutup di bawah suhu udara bebas, menjadi uap air jenuh dan akhirnya berubah menjadi cairan melalui fase pengembunan. Akan tetapi, bila suhu naik sampai suatu derajat, gas tersebut tidak mengembun lagi sekalipun di beri tekanan. Benda gas mempunyai batas kemampuan di mana sudah tidak berdaya untuk mengubah fase gas ke fase cair. Temperatur yang terdapat pada batas tersebut disebut temperatur maksimum dan tekanan pada gas yang terjadi pada batas tersebut dikatakan tekanan maksimum. 2.4 Dasar Termodinamika 2.4.1 Hukum Pertama Termodinamika Perubahan kalor dapat menghasilkan usaha dari perubahan energi dalam. Kalor yang masuk sistem menjelma sebagai penambahan energi dalam sistem 2.4.2 Hukum Kedua Termodinamika

Kalor tidak mungkin berpindah dari sistem yang bersuhu rendah ke sistem yang bersuhu tinggi secara spontan.

Tidak mungkin ada sembarang proses yang dapat memindahkan panas dari satu temperatur ke temperatur lain yang lebih tinggi.

Panas yang diserap oleh suatu sistem tidak dapat diubah seluruhnya menjadi kerja mekanik pada suatu proses melingkar, ini berarti pastilah ada panas yang terbuang ke sekeliling secara percuma.

2.4.3 Entalpy

43

Entalpy dari suatu sistem didefinisikan sebagai penjumlahan energi dalam dengan selisih hasil kali tekanan dan volume.

Entalpy dapat didefinisikan kalor total dari panas bebas dan panas laten yang terdapat pada suatu benda. Harga entalpy dinyatakan dalam satuan K Cal?Kg.

2.5 Diagram Garis Molier dan Siklus Pendinginan 2.5.1 Diagram Garis Molier Diagram ini menggambarkan hasil penyelidikan dalam sebuah garis yang disebut garis molier, yang dapat kita manfaatkan untuk menentukan kapasitas, tenaga dan sebagainya dari tiap komponen instalasi mesin pendingin guna perencanaan. Jika kita menggambarkan sirkulasi bahan pendingin dalam instalasi pendingin pada diagram garis molier, akan terdapat garis persegi A, B, C, D. 1.Proses Kompresi Refrigeran Titik A menyatakan keadaan gas refrigeran yang berada di tempat kompresor menghisap bahan pendingin, yang masih rendah tekanannya (pada tingkat P). Dari titik A-B 2. Proses Pengembunan Gas refrigeran yang masuk ke dalam kondensor garis horisontal akan berubah dari tingkat gas menjadi cair. Perubahan dari tingkat gas menjadi cair karena didinginkan (membuang panas). Dari titik B-C 3. Proses Pengembangan Bahan pendingin yang menjadi cair pada titik C, akan turun terus sampai titik ketika mengembang dalam kabut pada tepat kedudukan pipa kapiler/klep ekspansi. 4. Proses Penguapan

44

Refrigeran berupa kabut yang masuk ke dalam evaporator menarik panas dari molekul gas sekitarnya, sehingga entalpy bertambah. Dari titik D-A

menggambarkan pertambahan entalpy dan perubahan fase dari cair ke gas. BABIII BAGIAN-BAGIAN PENTING MESIN PENDINGIN 3.1 BAGIAN BAGIAN MESIN PENDINGIN 3.1.1 KOMPRESOR Kompresor memompa bahan pendingin ke seluruh sistem. Gunanya adalah untuk menghisap gas tekanan rendah dan suhu terendah dari evaporator dan kemudian menekan/memampatkan gas tersebut, sehingga menjadi gas dengan tekanan dan suhu tinggi, lalu dialirkan ke kondensor. Jadi kerja kompresor adalah untuk 1. Menurunkan tekanan di evaporator, sehingga bahan pendingin cair di evaporator dapat menguap pada suhu yang lebih rendah dan menyerap lebih banyak panas dari sekitarnya. 2. Menghisap gas bahan pendingin dari evaporator, lalu menaikkan tekanan dan suhu gas bahan pendingin tersebut, dan mengalirkannya ke kondensor sehingga gas tersebut dapat mengembun dan memberikan panasnya pada medium yang mendinginkan kondensor. Ada tiga macam kompresor yang banyak dipakai pada mesin-mesin pendingin yaitu : 1. Kompresor Torak, kompresinya dikerjakan oleh torak. 2. Kompresor Rotasi, kompresinya dikerjakan oleh blade atau vane dan roller 3. Kompresor Centrifugal, kompresor centrifugal tidak mempunyai alat-alat tersebut kompresi timbul akibat gaya centrifugal yang terjadi karena gas diputar oleh putaran yang tinggi kecepatannya dan impeller.

45

Ketiga macam kompresor mempunyai keunggulan masing-masing. Pemakaiannya ditentukan oleh besarnya kapasitas, penggunaannya, instalasinya dan jenis bahan pendingin yang dipakai. 3.1. 2 KONDENSOR Kondensor adalah suatu alat untuk merubah bahan pendingin dari bentuk gas menjadi cair. Bahan pendingin dari kompresor dengan suhu dan tekanan tinggi, panasnya keluar melalui permukaan rusuk-rusuk kondensor ke udara. Sebagai akibat dari kehilangan panas, bahan pendingin gas mula-mula didinginkan menjadi gas jenuh, kemudian mengembun berubah menjadi cair. 3.1.3 EVAPORATOR Evaporator adalah suatu alat dimana bahan pendingin menguap dari cair menjadi gas. Melalui perpindahan panas dari dinding dindingnya, mengambil panas dari ruangan di sekitarnya ke dalam sistem, panas tersebut lalu di bawa ke kompresor dan dikeluarkan lagi oleh kondensor. 3.1.4 SARINGAN Saringan untuk AC dibuat dari pipa tembaga berguna untuk menyaring kotorankotoran di dalam sistem, seperti : potongan timah, lumpur, karat, dan kotoran lainnya agar tidak masuk ke dalam pipa kapiler atau keran ekspansi. Saringan harus menyaring semua kotoran di dalam sistem, tetapi tidak boleh menyebabkan penurunan tekanan atau membuat sistem menjadi buntu. 3.1.5 PIPA KAPILER Pipa kapiler gunanya adalah untuk : 1. Menurunkan tekanan bahan pendingin cair yang mengalir di dalam pipa tersebut. 2. Mengontrol atau mengatur jumlah bahan pendingin cair yang mengalir dari sisi tekanan tinggi ke sisi tekanan rendah.

46

3.1.6 KERAN EKSPANSI Keran ekspansi ada 2 macam 1. Automatic Expasion Valve 2. Thermostatic Expansion Valve Thermostatic Exspansion Valve lebih baik dan lebih banyak dipakai, tetapi pada AC hanya dipakai automatic expansion valve, maka disini kita hanya akan membicarakan automatic expansion valve saja. Gunanya untuk menurunkan cairan dan tekanan tekanan evaporator dalam batas-batas yang telah di tentukan dengan mengalirkan cairan bahan pendingin dalam jumlah yang tertentu ke dalam evaporator. 3.1.7 BAHAN PENDINGIN Bahan pendingin adalah suatu zat yang mudah di rubah bentuknya dari gas menjadi cair atau sebaliknya, dipakai untuk mengambil panas dari evaporator dan membuangnya di kondensor. Bahan pendingin diantaranya yang dewasa ini banyak dan secara umum digunakan Refrigerant-11 (R-11), R-12, R-13, R-22. 3.1.8 MINYAK KOMPRESOR Minyak kompresor untuk mesin-mesin pendingin harus mempunyai sifat-sifat yang khusus untuk keperluan ini. Minyak kompresor dipakai untuk melindungi dan melumasi bagian-bagian yang bergerak dari kompresor. Karena dalam kenyataan minyak kompresor selalu berhubungan, bahkan bercampur dengan bahan pendingin di dalam kompresor dan mengalir bersama-sama ke semua bagian dari sistem.Minyak harus tahan terhadap suhu dan tekanan yang tinggi dari kompresor dan tetap dapat memberikan pelumasan dan melindungi bagian-bagian kompresor yang bergerak agar jangan aus dan rusak. 3.2 ALAT ALAT LISTRIK PADA AC 3.2.1 OPERATION CONTROL

47

Semua air conditioner mempunyai operation control atau kontrol panel yang terdiri dari 3 bagian : 1. Selector switch (pengatur hubungan) atau main switch. Macamnya ada 2 : Rotation Switch (putar) dan Push Switch (tekan). Fungsi dari keduanya adalah sama, untuk menjalankan fan saja atau menjalankan fan dari kompresor bersamasama. 2. Thermostat (pengatur suhu), sering juga dinamakan Air temperatur control gunanya adalah : mengatur batas-batas suhu di dalam ruangan, mengatur lamanya kompresor berhenti, dan menghentikan, menjalankan kembali kompresor secara otomatis. 3. Ventilation control (pengatur aliran udara), ada yang berbentuk knop yang di putar atau batang yang digerakkan ke kanan/ ke kiri atau ke atas/ke bawah untuk mendapatkan kedudukan Close : tidak ada udara yang masuk atau ke luar, open : damper terbuka ke dalam untuk mengalirkan udara ke luar dari kamar, Fresh: damper terbuka ke luar, untuk mengalirkan udara segar dari luar masuk ke dalam kamar. 3.2.2 OVERLOAD MOTOR PROTECTOR (PENGAMAN MOTOR) Dipasang untuk melindungi kompresor, yang memakai bi-metal dan heater. Bekerjanya dipengaruhi oleh amper yang terlalu besar dan panas dari motor atau kompresor. Bi-metal ini di hubungkan oleh kontak-kontak, yang dapat membuka kontaknya apabila amper yang lewat terlalu besar dan panas dari motor atau kompresor yang terlalu tinggi. Setelah lewat beberapa menit motor dan kompresor menjadi dingin, dan kontak-kontak dapat berhubungan kembali. 3.2.3 START CAPACITOR Start capacitor direncanakan untuk dipakai dalam waktu yang singkat paling lama 3 detik dan tidak berulang-ulang. Biasanya hanya di perlukan waktu 1 detik untuk memutar motor yang besar sampai 7 hp, sangat jarang yang memerlukan waktu start sampai 3 detik. Pada kompresor hermetik, start capacitor harus dipakai48

dengan relay, untuk menghubungkan dan melepaskan kembali aliran listrik dari start capcitor. 3.2.4 RUN CAPACITOR Run capacitor dapat memperbaiki effisiensi dengan mempertinggi atau memperbaiki faktor kerja dan menurunka amper. Menjalankan motor tanpa run capacitor yang tepat, dapat menurunkan kopel, faktor kerja, effisiensi, sedangkan ampernya naik. Run capacitor rusak dapat menyebabkan motor terbakar. 3.2.5 STARTING RELAY Starting relay pada kompresor hermetik unit adalah suatu switch yang bekerja otomatis, berdasarkan magnit yang dibangkitkan untuk menghubungkan dan melepas hubungan listrik dari start capacitor atau lilitan bantu, setelah motor mencapai putaran penuh. 3.2.6 MOTOR LISTRIK UNTUK KOMPRESOR HERMETIK Kompresor hermetik mempunyai motor listrik, dimana motor dan kompresor berada di dalam rumah yang tertutup rapat. Rotor dan motor menjadi satu dengan poros kompresor, maka jumlah putaran motor dan kompresor sama. Motor listrik satu phase untuk kompresor hermetik harus mempunyai starting kopel yang kuat dan effisiensi kerja yang baik. Motornya terutama mendapat pendinginan dari bahan pendingin yang dihisap dari evaporator, maka kompresor hermetik tidak boleh dijalankan untuk jangka waktu yang lama tanpa mendapat pendingin yang cukup 3.2.7 FAN MOTOR Fan motor digunakan sebagai tenaga penggerak untuk memutar daun kipas atau blower untuk mengalirkan udara dingin dari evaporator dan untuk mendinginkan kondensor. BAB IV

49

PRINSIP KERJA MESIN PENDINGIN 4.1 LEMARI ES (REFRIGERATOR) Adalah suatu unit mesin pendingin dipergunakan dalam rumah tangga, untuk menyimpan bahan makanan atau minuman. Untuk menguapkan bahan pendingin di perlukan panas. Lemari es memanfaatkan sifat ini. Bahan pendingin yang digunakan sudah menguap pada suhu -200C. panas yang diperlukan untuk penguapan ini diambil dari ruang pendingin, karena itu suhu dalam ruangan ini akan turun. Penguapan berlangsung dalam evaportor yang ditempatkan dalam ruang pendingin. Karena sirkulasi udara, ruang pendingin ini akan menjadi dingin seluruhnya. 4.1.1 Cara Kerja Instalasi Mesin Kulkas Setelah ke dalam kompresor diisi gas freon , maka gas itu dapat dikeluarkan kembali dari silinder oleh kompresor untuk diteruskan ke kondensor, setelah itu menuju saringan, setelah itu menuju ke pipa kapiler dan akan mengalami penahanan. Adanya penahanan ini akan menimbulkan suatu tekanan di dalam pipa kondensor. Sebagai akibatnya gas tersebut menjadi cairan di dalam pipa kondensor. Dari pipa kapiler cairan tersebut terus ke evaporator dan terus menguap untuk menyerap panas. Setelah menjadi gas terus dihisap lagi ke kompresor. Demilian siklus kembali terulang. 4.1.2 Jenis Aliran Udara Pendingin Jenis aliran udara pada lemari es ada 2 macam 1. Secara alamiah tanpa fan motor, di dalam lemari es udara dingin pada bagian atas dekat evaporator mempunyai berat jenis lebih besar. Dari beratnya sendiri udara dingin akan mengalir ke bagian bawah lemari es. Udara panas pada bagian bawah lemari es karena berat jenisnya lebih kecil dan di desak oleh udara dingin dari atas, akan mengalir naik ke atas menuju evaporator. Udara panas oleh evaporator didinginkan menjadi

50

dingin dan berat lalu mengalir ke bawah lagi. Demikianlah terjadi terus menerus secara alamiah. 2. Aliran udara di dalam lemari es dengan di tiup oleh fan motor, lemari es yang memakai fan motor, dapat terjadi sirkulasi udara dingin yang kuat dan merata ke semua bagian dari lemari es. Udara panas di dalam lemari es dihisap oleh fan motor lalu dialirkan melalui evaporator. Udara menjadi dingin dan oleh fan motor di dorong melalui saluran atau cerobong udara, di bagi merata ke semua bagian dalam lemari es. 4.2 Air Conditioner (AC) Air conditioner atau alat pengkondisi udara membantu manusia memberikan udara sejuk dan menyediakan uap air yang dibutuhkan bagi tubuh. Air conditioner bentuknya lebih kecil dari lemari es, tetapi tenaga motor listrik sebagai penggerak yang diperlukan jauh lebih besar. Proses pendinginan yang harus dilakukan yaitu untuk menyejukkan udara dalam suatu ruangan luas atau kamar, adalah jauh lebih lebih besar dari pada lemari pendingin atau kulkas. Secara umum dapat dibedakan menjadi 2 jenis : 1. AC Window/ Jendela 2. AC Split 4.2.1 Prinsip Kerja AC Prinsip kerja AC dapat dibagi 3 bagian : 1. Kerja bahan pendingin, Setelah ke dalam kompresor diisi gas freon , maka gas itu dapat dikeluarkan kembali dari silinder oleh kompresor untuk diteruskan ke kondensor, setelah itu menuju saringan, setelah itu menuju ke pipa kapiler dan akan mengalami penahanan. Adanya penahanan ini akan menimbulkan suatu tekanan di dalam pipa kondensor. Sebagai akibatnya gas tersebut menjadi cairan di dalam pipa kondensor. Dari pipa kapiler cairan tersebut terus ke evaporator dan terus menguap untuk

51

menyerap panas. Setelah menjadi gas terus dihisap lagi ke kompresor. Demilian siklus kembali terulang. 2. Kerja Aliran Udara, kerja aliran udara ada 2 bagian yang terpisah yaitu : bagian muka atau bagian depan dan bagian belakang atau bagian yang panas. Bagian depan bagian dari evaporator merupakan bagian dingin, dimana fan menghembuskan udara meniup evaporator sehingga udara yang keluar dari bagian depan udara dingin. Sedangkan bagian belakang fan meniup kondensor untuk mendinginkan sehingga udara yang keluar udara panas dari kondensor. 3. Kerja Alat-alat Listrik, Alat-alat listrik dari AC adalah bagian-bagian yang paling banyak variasinya dan paling banyak menimbulkan gangguangangguan. Pada prinsipnya dapat dibagi dalam 2 bagian : fan motor dan kompresor dengan alat alat pengaman dan pengaturnya.

52