Top Banner

of 24

Pondasi Boiler

Oct 16, 2015

Download

Documents

Engineering Calculation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

COVERPLTU BUNTOK 2x7 MW CONTRACTOR DOCUMENT REVIEWREVIEWCIVILMECHLOG DATEELECTIN COMM NO.I & CA APPROVEDSUPPORTB APPROVED AS NOTEDISTRIBUTIONCONTRACTORC NOT APPROVEDRECORDI INFORMATIONWORKING DOCUMENTAPPROVAL DOES NOT RELIEVE CONTRACTOR FROM RESPONSIBLE FOR ERROR OR DEVIATIONS FROM CONTRACT REQUIREMENTSBY :DATE :LOGDATEOUTCOMM NO.AIFRISSUED FOR REVIEW7/6/11EDTHRDSGNAMIREVSTATUSISSUE DESCRIPTIONDATEPREPAREDCHECKEDREVIEWEDAPPROVEDPT PLN (PERSERO) PUSAT ENJINIRING KETENAGALISTRIKANPLN NO.CONTRACTOR :SUBCONTRACTOR / DESIGN INSTITUTE :SUBCONTRACTOR DOCUMENT NO :SIGNATUREDATETITLE :STAGE :EPC APPDCALCULATION OF BOILER PILE CAPDETAIL DESIGNAPPROVEDREVEIWEDDOCUMENT NO :REV.CHECKEDT3125-CA/C/APREPARED

BLdxblb+dLl+dBLdhLdbbl4-701

ContentPLTU BUNTOK 2x7 MW KALIMANTAN TENGAHDOCUMENTCALCULATION OF BOILER PILE CAPISSUED DATE7-Jun-11JOB NOCONTRACT NOPAGEREVISIONT312524. PJ/121/PIKITRINGKAL/20101 OF 4ATABLE OF CONTENTS1GENERAL DESCRIPTION1.1Scope1.2Codes, Standards & Refferences1.3Quality of Material1.4Unit Weight of Material2LOADING DESIGN2.1Load Type2.2Load Calculation2.2.1Dead Load2.2.2Live Load2.2.4Wind Load2.2.5Seismic Load2.3Load Combination3STRUCTURAL ANALYSIS AND DESIGN3.1Structural Data3.2Input Data3.3Result Analysis3.3.1Stress Check3.3.2Deflection Check3.3.3Support Reaction3.4Base Plate and Anchor Bolt Design3.4.1Base Plate Design3.4.2Anchor Bolt Design3.5Foundation Design3.5.1Footing Foundation Calculation3.5.2Reinforcement Calculation3.5.3Column Pedestal Calculation3.6Steel Connection3.6.1Beam to Column3.6.2Beam to Beam4Appendix1StaadPro Text Editor2StaadPro Input Data3Table for Utilization Ratio

&RPage &PBLdxblb+dLl+dBLdhLdbbl

P11PurposeEstimate Pile Number of Boiler Foundation and Check Pile Cap Bearing Capacity2ReferenceReaction Force from Boiler Calculation by Grand Kartech ( vendor of Boiler )and Soil Investigation Report by. PT. Kalimantan Soil Engineering.2.aBOILER # 1 #Form Result SPT Data at location # BOILER 1 # with Bore Hole No. DH -4, hard soil at the 13 m depthbefore cutting of soil 3 m for end bearing pile.The Bearing Capacity Single Pile for 400 mm = 186.19 ton ( allowable ), use = 100 ton2.bBOILER # 2 #Form Result SPT Data at location # BOILER 2 # with Bore Hole No. DH -5, hard soil at the 35 m depthbefore cutting of soil 4 m for end bearing pile.The Bearing Capacity Single Pile for 400 mm = 143.58 ton ( allowable ), use = 100 ton( For More Detail see Table Attached )3Quality Of material1ConcreteC-30300Kg/cm2compressive strength at 28 days2Deformed reinforcingyield strength4000Kg/cm2steel bar (fy)3Plain reinforcingyield strength2400Kg/cm2steel bar (fy)4Pile dia 400 mmC-50500Kg/cm2compressive strength at 28 daysClass AAllowable Axle Load = 117.6 ton4FOUNDATION TYPE 1WidthB=1000mmLengthL=2000mmThickness SlabT=800mmDepthD=1300mmF=200mmConcrete Coverd'=70mmRebar Sizef=19mmEfective width, d = T-d'-0.5 f=721mmPedestalC=520mmSpun Piledia=400mmPile LengthL=30mDesign Single Pile BearingCapacity=80ton4.aControl Compressive StrengthReaction from Boiler Structure ( Grand Kartech )Fx / kgFy / kgFz / kgBC 5B=-62034350-815BC 5C=-98425589-495BC 6B=-25427260-744BC 6C=-37822568-543Estimate the number of Pile :Design Single Pile Bearing CapacityPa=80tonAxial Compressive Strengthfc'=30mpaDiameter of Pilef=400mmPile Cap Selfweight=1.0x2.0x0.8x2.4=3.840Selfweight of Pedestal=0.52x0.52x0.7x2.4=0.454Selfweight of Soil=1.0x2.0x0.7x0.5x1.0-0.52x0.52x0.7x1.0=0.510724.805Total LoadP=34.35+4.805=39.15tonN=P/Pa=39.15/80=0.4894374. Select the pile number =2Group Pile Bearing CapacityPile Number ( n )=2Efficiency Group ( x )=f =21.80=0.76x =221.80disc. pile ( s )=1.000my =1disc. to the edge ( p ) =0.50mfoundation length ( L )=2.000mPile bearing capacity total=n (x *Pbearing capacity single ) =121.2419386909tonSF=P comp. Total / P=121.24 / 39.15=3.096461843>3.0 (OK)4.bShear CheckPons ShearVc1=(1+(2/bc) (1/6 fc^0.5 ) bo ddia pile=400mmr pile=200mmd=721mm( effective width )bo=2*phi*(r+d)=2 *phi* ( 200 + 720.5 )=5780.74mmc=l / b=1.00Vc1=(1+ ( 2 /1 ) )*(1/6 fc' ^ 0.5 )*5780.74*720.5=11406385.7137034N=1140.6385713703tonVc2=(1/3*fc') bo d=( 1/3* 30 )* 5780.74*720.5=41650231.7N=4165.02317tonVc=min ( Vc1, Vc2 )=1140.6385713703( choose minimum ) Vc=0.75 x 1141"SK SNI 11.3"=855.48tonStatus :Vu< VcOK !80.00ton3.0 (OK)5.bShear CheckPons ShearVc1=(1+(2/bc) (1/6 fc^0.5 ) bo ddia pile=400mmr pile=200mmd=721mm( effective width )bo=2*phi*(r+d)=2 *phi* ( 200 + 720.5 )=5780.74mmc=l / b=1.00Vc1=(1+ ( 2 /1 ) )*(1/6 fc' ^ 0.5 )*5780.74*720.5=11406385.7137034N=1140.6385713703tonVc2=(1/3*fc') bo d=( 1/3* 30 )* 5780.74*720.5=41650231.7N=4165.02317tonVc=min ( Vc1, Vc2 )=1140.6385713703( choose minimum ) Vc=0.75 x 1141"SK SNI 11.3"=855.48tonStatus :Vu< VcOK !80.00ton3.0 (OK)7.bShear CheckPons ShearVc1=(1+(2/bc) (1/6 fc^0.5 ) bo ddia pile=400mmr pile=200mmd=721mm( effective width )bo=2*phi*(r+d)=2 *phi* ( 200 + 720.5 )=5780.74mmc=l / b=1.00Vc1=(1+ ( 2 /1 ) )*(1/6 fc' ^ 0.5 )*5780.74*720.5=11406385.7137034N=1140.6385713703tonVc2=(1/3*fc') bo d=( 1/3* 30 )* 5780.74*720.5=41650231.7N=4165.02317tonVc=min ( Vc1, Vc2 )=1140.6385713703( choose minimum ) Vc=0.75 x 1141"SK SNI 11.3"=855.48tonStatus :Vu< VcOK !80.00ton