Top Banner

of 43

Motor Bakar Pembakaran Dalam

Oct 10, 2015

Download

Documents

materi tentang motor bakar
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

Motor bakar Mesin pembakaran dalam adalah sebuah mesin yang sumber tenaganya berasal dari pengembangan gas-gas panas bertekanan tinggi hasil pembakaran campuran bahan bakar dan udara, yang berlangsung di dalam ruang tertutup dalam mesin, yang disebut ruang bakar (combustion chamber)."Mesin pembakaran dalam" sendiri biasanya merujuk kepada mesin yang pembakarannya dilakukan secara berselang-seling. Yang termasuk dalam mesin pembakaran dalam adalah mesin empat tak dan mesin dua tak, dan beberapa tipe mesin lainnya, misalnya mesin enam tak dan juga mesin wankel. Selain itu, mesin jet dan beberapa mesin roket termasuk dalam mesin pembakaran dalam.Mesin pembakaran dalam agak berbeda dengan mesin pembakaran luar (contohnya mesin uap dan mesin Stirling), karena pada mesin pembakaran luar, energinya tidak disalurkan ke fluida kerja yang tidak bercampur dengan hasil pembakaran. Fluida kerja ini dapat berupa udara, air panas, air bertekanan, atau cairan natrium yang dipanaskan di semacam boiler.Sebuah mesin piston bekerja dengan membakar bahan bakar hidrokarbon atau hidrogen untuk menekan sebuah piston, sedangkan sebuah mesin jet bekerja dengan panas pembakaran yang mendorong bagian dalam nozzle dan ruang pembakaran, sehingga mendorong mesin ke depan.Secara kontras, sebuah mesin pembakaran luar seperti mesin uap, bekerja ketika proses pembakaran memanaskan fluida yang bekerja terpisah, seperti air atau uap, yang kemudian melakukan kerja.Mesin jet, kebanyakan roket dan banyak turbin gas termasuk dalam mesin pembakaran dalam, tetapi istilah "mesin pembakaran dalam" seringkali menuju ke "mesin piston", yang merupakan tipe paling umum mesin pembakaran dalam.

Tipe-tipe mesin pembakaran dalamMesin dapat diklasifikasikan dalam banyak macam: siklus mesin yang digunakan, layout yang dipakai, sumber energi, penggunaan mesin, atau dari sistem pendinginnya.

Konfigurasi mesinMesin pembakaran dalam dapat dikelompokkan berdasarkan konfigurasinya.Layout mesin yang umum adalah:Mesin piston: Mesin dua-tak Mesin empat-tak Mesin enam-tak Mesin diesel Siklus Atkinson Mesin rotari: Mesin Wankel Pembakaran terus-menerus: Turbin gas Mesin jet (termasuk turbojet, turbofan, ramjet, Rocket, dll.)

Mesin bensin atau mesin Otto dari Nikolaus Otto adalah sebuah tipe mesin pembakaran dalam yang menggunakan nyala busi untuk proses pembakaran, dirancang untuk menggunakan bahan bakar bensin atau yang sejenis.Mesin bensin berbeda dengan mesin diesel dalam metode pencampuran bahan bakar dengan udara, dan mesin bensin selalu menggunakan penyalaan busi untuk proses pembakaran.Pada mesin diesel, hanya udara yang dikompresikan dalam ruang bakar dan dengan sendirinya udara tersebut terpanaskan, bahan bakar disuntikan ke dalam ruang bakar di akhir langkah kompresi untuk bercampur dengan udara yang sangat panas, pada saat kombinasi antara jumlah udara, jumlah bahan bakar, dan temperatur dalam kondisi tepat maka campuran udara dan bakar tersebut akan terbakar dengan sendirinya.Pada mesin bensin, pada umumnya udara dan bahan bakar dicampur sebelum masuk ke ruang bakar, sebagian kecil mesin bensin modern mengaplikasikan injeksi bahan bakar langsung ke silinder ruang bakar termasuk mesin bensin 2 tak untuk mendapatkan emisi gas buang yang ramah lingkungan. Pencampuran udara dan bahan bakar dilakukan oleh karburator atau sistem injeksi, keduanya mengalami perkembangan dari sistem manual sampai dengan penambahan sensor-sensor elektronik. Sistem Injeksi Bahan bakar di motor otto terjadi diluar silinder, tujuannya untuk mencampur udara dengan bahan bakar seproporsional mungkin. Hal ini dsebut EFI

AplikasiMesin bensin sering digunakan dalam: Sepeda motor. Mobil. Pesawat. Mesin untuk pemotong rumput Mesin untuk speedboat dan sebagainya.

DesainTipe-tipe mesin bensin berdasarkan siklus proses pembakaran adalah: Mesin satu tak, setiap langkah piston terjadi proses pembakaran. Mesin dua tak, memerlukan dua langkah piston dalam satu siklus proses pembakaran. Mesin empat tak, memerlukan empat langkah piston dalam satu siklus proses pembakaran. Mesin enam tak, memerlukan enam langkah piston dalam satu siklus proses pembakaran. Mesin wankel (rotary engine/wankel engine). memerlukan satu putaran penuh rotor dalam satu siklus pembakaran.

Tiga syarat utama supaya mesin bensin dapat berkerja:1. Kompresi ruang bakar yang cukup.2. Komposisi campuran udara dan bahan bakar yang sesuai.3. Pengapian yang tepat (besar percikan busi dan waktu penyalaan/timing ignition).

Sistem bahan bakar dalam teknik otomotif adalah suatu sistem yang berfungsi untuk menyimpan bahan bakar secara aman, menyalurkan bahan bakar ke mesin dan mengkabutkan bahan bakar agar bercampur dengan udara.Komponen utama dalam sistem bahan bakar terdiri dari: Tangki bahan bakar. Saluran bahan bakar. Penyaring bahan bakar. Pompa bahan bakar. Karburator atau sistem injeksi bahan bakar Sistem pengapian (ignition system). Sistem pemasukan udara dalam ruang bakar (intake system). Sistem pembuangan udara hasil pembakaran (exhaust system). Sistem katup (valve mechanism) Sistem pelumasan (lubricating system) Sistem pendinginan (cooling system). Sistem penyalaan (starting system).

Motor bakar torakMotor bakar torak adalah salah satu motor bakar yang menggunakan satu atau lebih torak atau piston yang bergerak, yang tujuannya untuk mengubah tekanan menjadi gerak melingkar. Tipe-tipe mesin piston di antaranya adalah: mesin pembakaran dalam, banyak digunakan di kendaraan bermotor; mesin uap, digunakan pada saat Revolusi Industri; dan juga mesin stirling.

Mesin piston pembakaran dalamBagian-bagian dari sebuah mesin piston 4 tak.E - camshaft buangI - camshaft masukS - Spark plugV - ValveP - PistonR - Connecting rodC - CrankshaftW - Water jacket for coolant flow

Yang biasanya ada di semua tipe mesin pistonDi mesin piston dimungkinkan adanya satu atau lebih jumlah piston. Piston-piston ini terletak di dalam silinder. Di dalam silinder, campuran bahan bakar dimasukkan. Campuran ini dapat berupa gas yang sudah panas dan bertekanan (seperti dalam mesin uap), atau bisa juga gasnya dipanaskan di dalam silinder dengan sistem pengapian. Gas panas ini nantinya yang akan mendorong piston bergerak ke bawah dan menggerakkan crankshaft.

Mesin uap adalah mesin yang menggunakan energi panas dalam uap air dan mengubahnya menjadi energi mekanis. Mesin uap digunakan dalam pompa, lokomotif dan kapal laut, dan sangat penting dalam Revolusi Industri.Mesin uap merupakan mesin pembakaran eksternal, dengan cairan yang terpisah dari hasil pembakaran. Sumber panas yang dapat digunakan yaitu tenaga surya, tenaga nuklir, atau tenaga panas bumi. Jika uap berkembang melalui piston atau turbin, akan menyebabkan kerja mekanik.

Mesin piston uapSebuah diagram skematik dari sebuah mesin uap 1 silinder.1 - Piston2 - Piston rod3 - Crosshead bearing4 - Connecting rod5 - Crankshaft6 - Eccentric valve motion7 - Flywheel8 - Sliding valve9 - Centrifugal governor.

Di semua tipe mesin ini, pergerakan piston ke bawah akan dikonversikan ke pergerakan melingkar, dengan menggunakan connecting rod dan sebuah crankshaft atau swashplate. Sebuah roda gila digunakan agar perputarannya lebih halus. Semakin banyak silinder dalam mesin piston pada umumnya juga membuat mesinnya lebih halus. Tenaga yang dihasilkan dari mesin piston biasanya berbanding lurus dengan total volume piston mesin tersebut.Sebuah seal digunakan di antara piston yang bergerak dan dinding silinder sehingga gas bertekanan tinggi yang ada di atas piston tidak bocor dan tidak mengurangi efisiensi mesin piston itu. Seal ini berupa satu atau lebih ring piston. Ring ini terbuat dari logam keras.Biasanya mesin digolongkan berdasarkan jumlah silinder dan total volume silindernya. Volume silinder dinyatakan dalam satuan sentimeter kubik (cc) atau liter (l). Kalau dilihat dari jumlah silinder, penggolongannya berdasarkan moda yang dipakai. Mesin pembakaran dalam dengan 1 atau 2 silinder kebanyakan dipakai di motor, sedangkan mobil biasanya memakai mesin dari 4 sampai 8 silinder. Sebuah lokomotif atau kapal biasanya memiliki jumlah silinder minimal 12 atau lebih. Volume silinder dapat bervariasi, dari 10cm sampai belasan ribu cm.Rasio kompresi adalah besaran perbandingan volume silinder ketika piston sedang berada di dasar silinder dan ketika piston berada di puncak silinder.Silinder sendiri dapat dipasang segaris, berbentuk mesin V, berseberangan satu sama lain, atau secara radial di sekeliling crankshaft.Dalam mesin uap dan mesin pembakaran dalam, katup dibutuhkan untuk mengatur bukaan masuk dan bukaan buang dalam siklus piston. Katup dijalankan oleh cam atau crank yang dijalankan oleh tangkai mesin. Desain pada mesin dulu-dulu menggunakan Katup D slide tapi sekarang menggunakan desain Katup piston atau Katup poppet.

Kapasitas mesinUntuk mesin piston, kapasitas mesin dihitung dari total volume semua piston yang ada di dalam mesin tersebut untuk sekali perpindahan. Biasanya kapasitas mesin diukur dalam satuan liter atau inci kubik atau sentimeter kubik (cc). Mesin dengan kapasitas yang besar biasanya akan lebih bertenaga dan torsinya lebih besar pada putaran rendah, tapi konsumsi bensinnya juga lebih boros, meskipun keluaran tenaga dan konsumsi bensin juga banyak dipengaruhi faktor lain.

Motor bakar dieselMotor bakar diesel biasa disebut juga dengan Mesin diesel (atau mesin pemicu kompresi) adalah motor bakar pembakaran dalam yang menggunakan panas kompresi untuk menciptakan penyalaan dan membakar bahan bakar yang telah diinjeksikan ke dalam ruang bakar. Mesin ini tidak menggunakan busi seperti mesin bensin atau mesin gas. Mesin ini ditemukan pada tahun 1892 oleh Rudolf Diesel, yang menerima paten pada 23 Februari 1893. Mesin diesel memiliki efisiensi termal terbaik dibandingkan dengan mesin pembakaran dalam maupun pembakaran luar lainnya, karena memiliki rasio kompresi yang sangat tinggi. Mesin diesel kecepatan-rendah (seperti pada mesin kapal) dapat memiliki efisiensi termal lebih dari 50%. Mesin diesel dikembangkan dalam versi dua-tak dan empat-tak. Mesin ini awalnya digunakan sebagai pengganti mesin uap. Sejak tahun 1910-an, mesin ini mulai digunakan untuk kapal dan kapal selam, kemudian diikuti lokomotif, truk, pembangkit listrik, dan peralatan berat lainnya. Di tahun 1930-an, mesin diesel mulai digunakan untuk mobil.

Bagaimana mesin diesel bekerja

Diagram siklus termodinamika sebuah mesin diesel ideal. Urutan kerja mesin diesel berurutan dari nomor 1-4 searah jarum jam. Dalam siklus mesin diesel, pembakaran terjadi dalam tekanan tetap dan pembuangan terjadi dalam volume tetap. Tenaga yang dihasilkan setiap siklus ini adalah area di dalam garis siklus.

Model mesin diesel, sisi kiri

Model mesin diesel, sisi kananLihat pula: Siklus dieselMesin diesel menggunakan prinsip kerja hukum Charles, yaitu ketika udara dikompresi maka suhunya akan meningkat. Udara disedot ke dalam ruang bakar mesin diesel dan dikompresi oleh piston yang merapat dengan rasio kompresi antara 15:1 dan 22:1 sehingga menghasilkan tekanan 40-bar (Templat:Convert/MPa psi), dibandingkan dengan mesin bensin yang hanya 8 sampai 14 bars (Templat:Convert/MPa psi). Tekanan tinggi ini akan menaikkan suhu udara sampai 550 C (1,022F). Beberapa saat sebelum piston memasuki proses kompresi, bahan bakar diesel disuntikkan ke ruang bakar langsung dalam tekanan tinggi melalui nozzle dan injektor supaya bercampur dengan udara panas yang bertekanan tinggi. Injektor memastikan bahwa bahan bakar terpecah menjadi butiran-butiran kecil dan tersebar merata. Uap bahan bakar kemudian menyala akibat udara yang terkompresi tinggi di dalam ruang bakar. Awal penguapan bahan bakar ini menyebabkan sebuah waktu tunggu selagi penyalaan, suara detonasi yang muncul pada mesin diesel adalah ketika uap mencapai suhu nyala dan menyebabkan naiknya tekanan diatas piston secara mendadak. Oleh karena itu, penyemprotan bahan bakar ke ruang bakar mulai dilakukan saat piston mendekati (sangat dekat) TMA untuk menghindari detonasi. Penyemprotan bahan bakar yang langsung ke ruang bakar di atas piston dinamakan injeksi langsung (direct injection) sedangkan penyemprotan bahan bakar kedalam ruang khusus yang berhubungan langsung dengan ruang bakar utama dimana piston berada dinamakan injeksi tidak langsung (indirect injection).Ledakan tertutup ini menyebabkan gas dalam ruang pembakaran mengembang dengan cepat, mendorong piston ke bawah dan menghasilkan tenaga linear. Batang penghubung (connecting rod) menyalurkan gerakan ini ke crankshaft dan oleh crankshaft tenaga linear tadi diubah menjadi tenaga putar.Tingginya kompresi menyebabkan pembakaran dapat terjadi tanpa dibutuhkan sistem penyala terpisah (pada mesin bensin digunakan busi), sehingga rasio kompresi yang tinggi meningkatkan efisiensi mesin. Meninggikan rasio kompresi pada mesin bensin hanya terbatas untuk mencegah kerusakan pra-penyalaan.

Sistem injeksi generasi awalMesin asli Diesel menginjeksikan bahan bakar dengan bantuan udara bertekanan, yang mengatomisasi bahan bakar dan memaksa bahan bakar masuk dalam ruang bakar melalui nosel (menggunakan prinsip yang sama dengan semprotan aerosol). Bukaan nosel ditutup oleh katup yang dikontrol oleh camshaft untuk mengawali injeksi bahan bakar sebelum titik mati atas/top dead centre. Menggunakan 3 tahap kompresor memang memakan tenaga namun efisiensi dan output tenaga bersih yang dihasilkan diatas mesin pembakaran lainnya pada waktu itu.Mesin diesel saat ini menggunakaan tekanan sangat tinggi dengan pompa mekanik dan menekan bahan bakar dengan injektor tanpa udara bertekanan. Dengan diesel injeksi langsung, injektor akan menyemprot bahan bakar melalui 4-12 orifice kecil pada noselnya. Mesin diesel injeksi generasi awal selalu mempunyai pembakaran awal tanpa kenaikan tekanan yang drastis ketika pembakaran. Saat ini riset sedang dilakukan untuk menggunakan lagi beberapa bentuk injeksi udara desain asli Rudolf Diesel untuk mengurangi polusi nitrogen oksida. Pada semua mesin diesel, mesin diesel modern selalu mengacu pada desain asli Rudolf Diesel, dimana bahan bakar menyala melalui kompresi tinggi.

Jalur bahan bakarUntuk aplikasi generator listrik, komponen penting dari mesin diesel adalah governor, yang mengontrol suplai bahan bakar agar putaran mesin selalu pada putaran yang diinginkan. Apabila putaran mesin turun terlalu banyak kualitas listrik yang dikeluarkan akan menurun sehingga peralatan listrik tidak dapat bekerja sebagaimana mestinya, sedangkan apabila putaran mesin terlalu tinggi maka dapat mengakibatkan over voltage yang bisa merusak peralatan listrik. Mesin diesel modern menggunakan pengontrolan elektronik canggih untuk mencapai tujuan ini melalui modul kontrol elektronik (ECM) atau unit kontrol elektronik (ECU) - yang merupakan "komputer" dalam mesin. ECM/ECU menerima sinyal kecepatan mesin melalui sensor dan menggunakan algoritma dan mencari tabel kalibrasi yang disimpan dalam ECM/ECU, dia mengontrol jumlah bahan bakar dan waktu melalui aktuator elektronik atau hidraulik untuk mengatur kecepatan mesin.

Keuntungan utamaMesin diesel memiliki beberapa keuntungan dibandingkan mesin pembakaran lain: Mesin diesel membakar lebih sedikit bahan bakar daripada mesin bensin untuk menghasilkan kerja yang sama karena suhu pembakaran dan rasio kompresi yang lebih tinggi.[1] Mesin bensin umumnya hanya memiliki tingkat efisiensi 30%, sedangkan mesin diesel bisa mencapai 45% (mengubah energi bahan bakar menjadi energi mekanik[7] (lihat siklus Carnot untuk penjelasan lebih lanjut). Tidak ada tegangan listrik tinggi pada sistem penyalaan, sehingga tahan lama dan mudah digunakan pada lingkungan yang keras. Tidak adanya koil, kawat spark plug, dsb juga menghilangkan sumber gangguan frekuensi radio yang dapat mengganggu peralatan navigasi dan komunikasi, sehingga penting pada pesawat terbang dan kapal. Daya tahan mesin diesel umumnya 2 kali lebih lama daripada mesin bensin[8]Templat:Better source karena suku cadang yang digunakan telah diperkuat.. Bus yang menggunakan biodiesel Bahan bakar diesel dapat dihasilkan langsung dari minyak bumi. Distilasi memang menghasilkan bensin, namun hasilnya tak akan cukup tanpa adanya catalytic reforming, yang berarti memerlukan ongkos tambahan. Bahan bakar diesel umumnya dianggap lebih aman daripada bensin. Meskipun bahan bakar diesel dapat terbakar pada udara bebas jika disulut dengan sumbu, namun tidak akan meledak dan tidak menghasilkan uap yang mudah terbakar dalam jumlah besar. Tekanan uap yang rendah sangat menguntungkan untuk aplikasi kapal laut, dimana campuran bahan bakar dengan udara yang dapat meledak sangatlah berbahaya. Dengan alasan yang sama, mesin diesel tahan terhadap vapor lock. Untuk beban parsial berapapun, efisiensi bahan bakar (massa yang dibakar per energi yang dihasilkan) hampir konstan untuk mesin diesel, sedangkan pada mesin bensin akan proporsional.[9][10][11][12] Mesin diesel menghasilkan panas yang terbuang lebih sedikit.[1] Mesin diesel dapat menerima tekanan dari supercharger atau turbocharger tanpa batasan (tergantung dari kekuatan komponen mesinnya saja). Tidak seperti mesin bensin yang dapat menimbulkan detonasi/ketukan pada tekanan tinggi. Kandungan karbon monoksida pada gas buangnya minimal, oleh karena itu mesin diesel digunakan pada tambang bawah tanah.[13] Biodiesel mudah disintesis, bahan bakar berbasis non-minyak bumi (melalui proses transesterifikasi) dan dapat langsung digunakan di banyak mesin diesel, sedangkan mesin bensin membutuhkan banyak ubahan untuk dapat menggunakan bahan bakar sintetis untuk dapat digunakan (misalnya etanol ditambahkan ke gasohol).

Supercharger dan turbochargerKebanyakan mesin diesel saat ini telah mempunyai turbocharger dan beberapa diantaranya gabungan turbo dan supercharger. Karena bahan bakar pada mesin diesel tidak ada dalam silinder sebelum pembakaran dimulai, maka tekanan udara lebih dari 1 bar (100 kPa) dapat dimasukkan dalam silinder tanpa pra-pembakaran. Mesin dengan turbocharger dapat memproduksi tenaga jauh lebih besar daripada mesin biasa dengan konfigurasi yang sama, karena lebih banyak udara yang dimasukkan berarti makin banyak bahan bakar yang dapat dibakar sehingga tenaga lebih besar. Supercharger umumnya digerakkan mekanis oleh crankshaft mesin, sedangkan turbocharger digerakkan oleh gas buang mesin, tidak membutuhkan tenaga mekanis apapun. Turbocharger dapat mengurangi konsumsi bahan bakar[14] pada mesin diesel dengan mengambil panas yang terbuang dari gas buang.Karena mesin dengan turbocharger dan supercharger dapat memproduksi tenaga lebih besar dengan kapasitas sama, maka perhatian lebih mesti diperhatikan pada desain mekanikal komponen, pelumasan, dan pendinginan. Piston umumnya didinginkan dengan minyak pelumas yang disemprotkan di bagian bawah piston. Mesin-mesin yang besar dapat menggunakan air, air laut atau minyak melalui pipa teleskopi yang menempel pada crosshead.[15]Untuk meningkatkan kemampuan mesin diesel, umumnya ditambahkan intercooler untuk mendinginkan udara yang akan masuk ruang bakar. Udara yang panas volumenya akan mengembang begitu juga sebaliknya, maka dengan didinginkan bertujuan supaya udara yang menempati ruang bakar bisa lebih banyak.

Kondisi dinginPenyalaanMesin diesel sulit untuk hidup pada saat mesin dalam kondisi dingin. Beberapa mesin menggunakan pemanas elektronik kecil yang disebut busi menyala (spark/glow plug) di dalam silinder untuk memanaskan ruang bakar sebelum penyalaan mesin. Lainnya menggunakan pemanas "resistive grid" dalam "intake manifold" untuk menghangatkan udara masuk sampai mesin mencapai suhu operasi. Setelah mesin beroperasi pembakaran bahan bakar dalam silinder dengan efektif memanaskan mesin.

PengentalanDalam cuaca yang sangat dingin, bahan bakar diesel mengental dan meningkatkan viscositas dan membentuk kristal lilin atau gel. Kristal ini dapat terbentuk di sepanjang jalur bahan bakar (terutama pada saringan), membuat penyalaan mesin dalam cuaca dingin menjadi sulit. Pemanas listrik kecil pada tanki bahan bakar dan di sepanjang sistem bahan bakar umumnya menjadi solusi. Selain itu, cara umum yang dipakai adalah untuk memanaskan saringan bahan bakar dan jalur bahan bakar secara elektronik.Seiring dengan meningkatnya teknologi bahan bakar, pengentalan saat ini jarang terjadi, namun pada kondisi terdingin campuran adalah diesel dan minyak tanah dapat digunakan. Stasiun pengisian bahan bakar di kawasan dingin pada umumnya menyediakan bahan bakar diesel musim dingin yang memungkinkan operasi di bawah semestinya. Di Eropa, karakteristik bahan bakar ini tercantum pada standar EN 590.

Tipe mesin dieselAda dua kelas mesin diesel: dua-tak dan empat-tak.Biasanya jumlah silinder dalam kelipatan dua, meskipun berapapun jumlah silinder dapat digunakan selama poros engkol dapat diseimbangkan untuk mencegah getaran yang berlebihan. Mesin 6 segaris paling banyak diproduksi dalam mesin tugas-medium ke tugas-berat, meskipun V8 dan 4 segaris juga banyak diproduksi.Mesin diesel bekerja dengan kompresi udara yang cukup tinggi, sehingga pada mesin disel besar perlu ditambahkan sejumlah udara yang lebih banyak. Maka digunakan Supercharger atau turbocharger pada intake manifold, dengan tujuan memenuhi kebutuhan udara kompresi.

Keunggulan dan kelemahan dibanding dengan mesin busi-nyalaEfisiensi bahan bakarMesin S80ME-C7 milik MAN yang bermesin diesel mengkonsumsi 155gram (5.5oz) bahan bakar per kWh dan menghasilkan efisiensi sebesar 54.4%, sehingga menjadikannya konversi bahan bakar tertinggi menjadi tenaga untuk mesin pembakaran dalam maupun luar manapun[1] (The efficiency of a combined cycle gas turbine system can exceed 60%.[16]) Hal ini berarti mesin diesel lebih efisien daripada mesin bensin untuk keluaran tenaga yang sama, sehingga konsumsi bahan bakar lebih irit. Contoh lainnya adalah koda Octavia, dimana mesin bensinnya mengkonsumsi bahan bakar Templat:Convert/L/100km untuk tenaga Templat:Convert/LinAonDbSon sedangkan mesin dieselnya hanya mengkonsumsi Templat:Convert/L/100km untuk keluaran tenaga 105bhp (78kW).Keefisienan mesin diesel disebabkan karena bahan bakar diesel lebih padat dan kandungan energinya lebih banyak 15% berdasarkan volume. Meskipun nilai kalornya sedikit lebih rendah daripada bensin (diesel 45,3MJ/kg (megajoule per kilogram, bensin 45.8MJ/kg), namun karena densitasnya lebih tinggi, maka massanya lebih besar.Selain itu, mesin diesel juga lebih irit karena rasio kompresi yang lebih tinggi, terutama pada putaran rendah dan kondisi mesin diam. Tidak seperti mesin bensin, mesin diesel tidak memiliki butterfly valve/throttle pada sistem inlet yang menutup pada kondisi mesin diam. Hal ini menimbulkan kerugian dan menurunkan adanya udara masuk, sehingga efisiensi mesin bensin menurun. Di banyak penggunaan, seperti kapal laut, pertanian, dan kereta, mesin diesel dibiarkan menyala diam berjam-jam. Kuntungan ini banyak digunakan pada lokomotif kereta (liat dieselisasi).Mesin diesel pada bus, truk, dan mobil-mobil baru bermesin diesel dapat mencapai efisiensi maksimum sekitar 45%,[17] dan sedang ditingkatkan sehingga mencapai 55%.[18] Meskipun begitu, rata-rata efisiensinya tidak selalu sama, tergantung pada kondisi dan penggunaan.[19]

Motor bakar stirlingMotor bakar stirling atau biasa juga disebut Mesin stirling adalah salah satu mesin kalor dan didefinisikan sebagai mesin regenerasi udara panas siklus tertutup. Dalam konteks ini, siklus tertutup berarti bahwa fluida kerjanya secara permanen terkurung di dalam sistem, di mana mesin siklus terbuka seperti mesin pembakaran internal dan beberapa mesin uap, menukarkan fluida kerjanya dengan lingkungan sekitar sebagai bagiaan dari siklus kerja. Regenerasi berarti bahwa adanya penggunaan alat penukar panas internal, yang dapat meningkatkan efisiensi mesin. Banyak sekali kemungkinan dari penggunaan mesin stirling ini, dengan mayoritas masuk ke kategori mesin dengan piston tolak balik.

Mesin Stirling tipe Alpha dengan warna merah untuk menunjukkan suhu tinggi dan warna biru untuk suhu rendah

Regenerasi berarti bahwa adanya penggunaan alat penukar panas internal, yang dapat meningkatkan efisiensi mesin. Banyak sekali kemungkinan dari penggunaan mesin stirling ini, dengan mayoritas masuk ke kategori mesin dengan piston tolak balik. Mesin stirling secara tradisional diklasifikasikan ke dalam mesin pembakaran eksternal, meskipun panas bisa didapatkan dari sumber selain pembakaran seperti tenaga matahari maupun nuklir. Mesin stirling beroperasi melalui penggunaan sumber panas eksternal dan heat sink eksternal, masing-masing dijaga agar memiliki perbedaan temperatur yang cukup besar.

Latar belakangDalam usaha meningkatkan konversi yang bisa didapat dari perubahan energi panas ke kerja, mesin stirling memiliki potensi untuk mencapai efisiensi tertinggi dari semua mesin kalor, secara teori sampai efisiensi maksimal mesin Carnot, meskipun dalam prakteknya usaha ini terus dibatasi oleh berbagai sifat-sifat non-ideal dari baik itu fluida kerjanya maupun bahan dari mesin itu sendiri, seperti gesekan, konduktivitas termal, kekuatan tensile, creep, titik lebur, dll. Mesin ini dapat dioperasikan melalui berbagai sumber panas yang dapat mencukupi, seperti tenaga matahari, kimia maupun nuklir.Dibandingkan dengan mesin pembakaran internal, mesin Stirling memiliki potensi untuk lebih efisien, lebih tenang, dan lebih mudah perawatannya.Belakangan ini, keuntungan mesin Stirling terus meningkat, hal ini dimungkinkan dengan adanya kenaikan harga energi, kelangkaan sumber energi, sampai kepedulian tentang masalah lingkungan seperti pemanasan global. Ketertarikan yang meningkat terhadap mesin Stirling ini berakibat dengan terus bertambahnya penelitian mengenai peralatan Stirling tersebut. Aplikasinya termasuk pemompaan air, astronautik, dan sebagai pembangkit listrik untuk sumber-sumber panas yang tidak sesuai dengan mesin pembakaran dalam seperti energi matahari.Karakteristik mesin Stirling yang berguna lainnya adalah jika yang disuplai energi mekanik maka ia dapat beroperasi sebagai heat pump.

Mesin kalorMesin kalor adalah sebutan untuk alat yang berfungsi mengubah energi panas menjadi energi mekanik. Dalam mesin mobil misalnya, energi panas hasil pembakaran bahan bakar diubah menjadi energi gerak mobil. Tetapi, dalam semua mesin kalor kita ketahui bahwa pengubahan energi panas ke energi mekanik selalu disertai pengeluaran gas buang, yang membawa sejumlah energi panas. Dengan demikian, hanya sebagian energi panas hasil pembakaran bahan bakar yang diubah ke energi mekanik. Contoh lain adalah dalam mesin pembangkit tenaga listrik; batu bara atau bahan bakar lain dibakar dan energi panas yang dihasilkan digunakan untuk mengubah wujud air ke uap. Uap ini diarahkan ke sudu-sudu sebuah turbin, membuat sudu-sudu ini berputar. Akhirnya energi mekanik putaran ini digunakan untuk menggerakkan generator listrik.

Mesin longitudinalDalam teknik otomotif, sebuah mesin longitudinal adalah mesin pembakaran dalam yang crankshaftnya terletak sepanjang sumbu roda panjang kendaraan, dari depan ke belakang.Banyak mobil-mobil kelas premium yang menggunakan orientasi mesin seperti ini, karena mesin-mesin 6 segaris dan mesin V8 terlalu panjang untuk dimasukkan dengan model mesin transverse.

Peletakan posisi untuk mesin longitudinalMesin ini dapat diletakkan dengan 3 posisi utama:1. Mesin depan - mesin diletakkan di bonnet/kap depan, lebih depan dari sumbu roda depan. (kalau di belakang sumbu roda depan terkadang disebut: mesin "tengah-depan"),2. Mesin belakang - mesin diletakkan di tempat yang biasanya menjadi bagasi mobil dan terletak sejajar/lebih belakang dari sumbu roda belakang,3. Mesin tengah - mesin diletakkan di antara sumbu roda depan dan sumbu roda belakang, kadang diletakkan di belakang bangku pengemudi.

Tipe-tipe penggunaan mesin longitudinal yang sering digunakanBerikut ini adalah daftar tipe mesin yang bisa dipakai di kendaraan: Mesin segaris 2 segaris, 3 segaris, 4 segaris, 5 segaris, 6 segaris, dan kadang 8 segaris Mesin V V2, V4, V6, V8, V10, V12, dan V16 Mesin flat/boxer H2, H4, H6 Mesin W W8, W12 atau W16

Mesin wankelMesin wankel atau disebut juga mesin rotary adalah mesin pembakaran dalam yang digerakkan oleh tekanan yang dihasilkan oleh pembakaran diubah menjadi gerakan berputar pada rotor yang menggerakkan sumbu.

Mesin Wankel di Deutsches Museum Munich, Jerman

Mesin ini dikembangkan oleh insinyur Jerman Felix Wankel. Dia memulai penelitiannya pada awal tahun 1950an di NSU Motorenwerke AG (NSU) dan prototypenya yang bisa bekerja pada tahun 1957. NSU selanjutnya melisensikan konsepnya kepada beberapa perusahaan lain di seantero dunia untuk memperbaiki konsepnya.Karena mesin wankel sangat kompak, ringan, mesin ini banyak digunakan pada berbagai kendaraan dan peralatan seperti pada mobil balap, pesawat terbang, go-kart, speed boat.

Cara kerja mesin wankel

Cara kerja mesin wankelTanda "A" merupakan salah satu ujung dari rotor. Tanda "B" menunjukkan sumbu eccentric yang menggerakkan poros mesin. Sumbu poros mesin berputar tiga kali untuk setiap putaran rotor mengelilingi poros eccentric.

Pompa bahan bakarPompa bahan bakar atau dikenal juga dengan nama Fuel Pump adalah salah satu komponen dalam sistem bahan bakar pada sebuah kendaraan atau mesin pembakaran dalam lainnya. Sebagian mesin tidak memerlukan pompa bahan bakar karena dari desainnya dan dengan gravitasi, bahan bakar akan mengalir dengan sendirinya dalam sistem bahan bakarnya. Sebagian yang lainnya harus menggunakan pompa untuk mengalirkan bahan bakar dari tangki bahan bakar. Pada mesin dengan menggunakan karburator, umumnya menggunakan pompa mekanis bertekanan rendah yang terpasang di luar tangki bahan bakar, sedangkan mesin dengan injeksi bahan bakar, sebagian memiliki 2 macam pompa dalam sistem penyaluran bahan bakarnya,1. Pompa bahan bakar tekanan sedang/volume besar di tangki atau lebih dikenal dengan nama Fuel Pump. Pompa ini berfungsi untuk menyuplai kebutuhan dalam sistem injeksi bahan bakar. Umumnya pompa elektris yang terpasang dalam tangki bahan bakar.2. Pompa tekanan tinggi/volume rendah atau lebih dikenal dengan nama Fuel Injection Pump (FIP). Pompa ini ada dalam sistem injeksi bahan bahan bakar berfungsi untuk memompa bahan bakar dalam tekanan tinggi untuk suplai ke injektor.

Sebagian mesin dengan injeksi bahan bakar tidak memiliki pompa bahan bakar. Sistem injeksi bahan bakar menyedot bahan bakar langsung dari tangki atau FIP memompa bahan bakar dari tangki menuju injektor.Pompa bahan bakar memiliki dua jenis:1. Pompa bahan bakar mekanis.2. Pompa bahan bakar elektris.

Pompa bahan bakar mekanis

Pompa bahan bakar mekanisDesainSebagian besar pompa jenis ini adalah tipe pompa membran. Pompa membran memiliki ruang pompa yang volumenya tergantung dari elastisitas pergerakan membran. Selain itu, dilengkapi dengan katup satu arah pada saluran masuk dan saluran keluar. Desain spesifik sangat bervariasi, umumnya pompa ini terpasang pada blok mesin atau kepala silinder. Sebuah poros yang memiliki poros eksentrik serta terhubung dengan putaran mesin akan menggerakan tuas pada pompa ini (langsung atau melalui poros penekan/penghubung) untuk menggerakan membran dengan gerakan naik turun. Pergerakan ini akan membuat volume ruang pompa akan mengecil atau membesar, dan berulang-ulang sesuai dengan putaran mesin. Saat volume ruang pompa mengecil, tekanan ruang pompa akan naik dan mengakibatkan katup satu arah pada saluran keluar terbuka serta katup satu arah pada saluran masuk tertutup, bahan bakan akan terpompa keluar melalui saluran keluar. Saat volume ruang pompa berubah dari terkecil mejadi membesar, tekanan pompa akan menurun dan mengakibatkan katup satu arah pada saluran keluar tertutup serta katup satu arah pada saluran masuk terbuka, bahan bajar akan terhisap masuk ruang pompa melalui saluran masuk. Saat proses ini terjadi secara terus menerus, bahan bakar akan mengalir dari tangki menuju karburator atau sistem injeksi bahan bakar. Pompa bahan bakar mekanis umumnya menghasilkan tekanan tidak lebih dari 15 psi, dikualifikasikan sebagai pompa tekanan rendah.

AplikasiSebagian besar mesin bensin dengan karburator dan sebagian kecil mesin diesel menggunakan pompa bahan bakar mekanis.

Pompa bahan bakar elektris

Pompa bahan bakar elektris

Pompa bahan bakar elektris umumnya terpasang pada tangki bahan bakar, sebagian kecil pompa terpasang dalam ruang mesin. Tergantung dari desain, pompa tipe ini menghasilkan tekanan yang bervariasi, dari pompa bertekanan rendah sampai cukup tinggi. Sebagian dilengkapi dengan sensor untuk mendeteksi beban (suplai) berlebih, yang akan mematikan kerja pompa karena umumnya tidak ada saluran untuk aliran balik ke tangki bahan bakar.

AplikasiKendaraan modern terutama yang sudah menggunakan sistem injeksi bahan bakar, umumnya menggunakan pompa bahan bakar elektris karena: Lebih mudah disinergikan dengan sistem yang lain, misal dengan unit kontrol elektronik. Pompa injeksi akan bekerja lebih efektif apabila bahan bakar yang masuk pompa injeksi dalam keadaan bertekanan cukup.

KarburatorKarburator adalah sebuah alat yang mencampur udara dan bahan bakar untuk sebuah mesin pembakaran dalam. Karburator masih digunakan dalam mesin kecil dan dalam mobil tua atau khusus seperti yang dirancang untuk balap mobil stok. Kebanyakan mobil yang diproduksi pada awal 1980-an telah menggunakan injeksi bahan bakar elektronik terkomputerisasi. Mayoritas sepeda motor masih menggunakan karburator dikarenakan lebih ringan dan murah, namun pada 2005 sudah banyak model baru diperkenalkan dengan injeksi bahan bakar.

Bendix-Technico (Stromberg) 1-barrel downdraft carburetor model BXUV-3

DesainKarburator dapat dikelompokan menurut arah aliran udara, barel dan tipe venturi. Tiap-tiap karburator mengkombinasikan ketiganya dalam desainnya.

Arah aliran udara1. Aliran turun (downdraft), udara masuk dari bagian atas karburator lalu keluar melalui bagian bawah karburator.2. Aliran datar (sidedraft), udara masuk dari sisi samping dan mengalir dengan arah mendatar lalu keluar lewat sisi sebelahnya.3. Aliran naik (updraft), kebalikan dari aliran turun, udara masuk dari bawah lalu keluar melalui bagian atas.

Barel

A high performance 4-barrel carburetor.

Barel adalah saluran udara yang didalamnya terdapat venturi.1. Single barel, hanya memiliki satu barel. Umumnya digunakan pada sepeda motor atau mobil dengan kapasitas mesin kecil. Pada tipe ini semua kebutuhan bahan bakar pada berbagai putaran mesin dilayani oleh satu barel. Pada putaran mesin rendah, diameter venturi yang cenderung lebih besar dari tipe multi barel akan lebih lambat menghasilkan tenaga.2. Multi barel, memimiliki lebih dari satu barel (umumnya dua atau empat barel), untuk memenuhi kebutuhan akan aliran udara yang lebih besar terutama untuk mesin dengan kapasitas mesin yang besar. Kecepatan aliran maksimal pada venturi karburator multi barel lebih kecil sehingga kerugian gesekannya pun lebih kecil.

Venturi1. Venturi Tetap, pada tipe ini ukuran venturi selalu tetap. Pedal gas mengatur katup udara yang menentukan besarnya aliran udara yang melewati venturi sehigga menentukan besarnya tekanan untuk menarik bahan bakar.2. Venturi bergerak, pada tipe ini pedal gas mengatur besarnya venturi dengan menggunakan piston yang dapat naik-turun sehingga membentuk celah venturi yang dapat berubah-ubah. Naik-turunnya piston venturi ini disertai dengan naik-turunnya needle jet yang mengatur besarnya bahan bakar yang dapat tertarik serta dengan aliran udara. Tipe ini disebut juga "tekanan tetap" karena tekanan udara sebelum memasuki venturi selalu sama.

Prinsip KerjaPada dasarnya karburator bekerja menggunakan Prinsip Bernoulli: semakin cepat udara bergerak maka semakin kecil tekanan statis-nya namun makin tinggi tekanan dinamis-nya. Pedal gas pada mobil sebenarnya tidak secara langsung mengendalikan besarnya aliran bahan bakar yang masuk kedalam ruang bakar. Pedal gas sebenarnya mengendalikan katup dalam karburator untuk menentukan besarnya aliran udara yang dapat masuk kedalam ruang bakar. Udara bergerak dalam karburator inilah yang memiliki tekanan untuk menarik serta bahan bakar masuk kedalam ruang bakar.Kebanyakan mesin berkarburator hanya memiliki satu buah karburator, namun ada pula yang menggunakan satu karburator untuk tiap silinder yang dimiliki. Bahkan sempat menjadi trend modifikasi sepeda motor di Indonesia penggunaan multi-carbu (banyak karburator) namun biasanya hal ini hanya digunakan sebagai hiasan saja tanpa ada fungsi teknisnya. Mesin-mesin generasi awal menggunakan karburator aliran keatas (updraft), dimana udara masuk melalui bagian bawah karburator lalu keluar melalui bagian atas. Keuntungan desain ini adalah dapat menghindari terjadinya mesin banjir, karena kelebihan bahan bakar cair akan langsung tumpah keluar karburator dan tidak sampai masuk kedalam intake mainfold; keuntungan lainnya adalah bagian bawah karburator dapat disambungkan dengan saluran oli supaya ada sedikit oli yang ikut kedalam aliran udara dan digunakan untuk membasuh filter udara; namun dengan menggunakan filter udara berbahan kertas pembasuhan menggunakan oli ini sudah tidak diperlukan lagi sekarang ini.Mulai akhir 1930-an, karburator aliran kebawah (downdraft) dan aliran kesamping (sidedraft) mulai popouler digunakan untuk otomotif.

OperasionalPada setiap saat beroperasinya, karburator harus mampu: Mengatur besarnya aliran udara yang masuk kedalam ruang bakar Menyalurkan bahan bakar dengan jumlah yang tepat sesuai dengan aliran udara yang masuk kedalam ruang bakar sehingga rasio bahan bakar/udara tetap terjaga. Mencampur airan udara dan bahan bakar dengan rata dan sempurnaHal diatas bakal mudah dilakukan jika saja bensin dan udara adalah fluida ideal; tapi kenyataannya, dengan sifat alami mereka, yaitu adanya viskositas, gaya gesek fluida, inersia fluida, dan sebagainya karbrator menjadi sangat kompleks dalam mengatasi keadaan tidak ideal ini. Juga karburator harus tetap mampu memproduksi campuran bensin/udara yang tepat dalam kondisi apapun, karena karburator harus beroperasi dalam temperatur, tekanan udara, putaran mesin, dan gaya sentrifugal yang sangat beragam. Karburator harus mampu beroperasi dalam keadaan: Start mesin dalam keadaan dingin Start dalam keadaan panas Langsam atau berjalan pada putaran rendah Akselarasi ketika tiba-tiba membuka gas Kecepatan tinggi dengan gas terbuka penuh Kecepatan stabil dengan gas sebagian terbuka dalam jangka waktu yang lama

Karburator modern juga harus mampu menekan jumlah emisi kendaraan

Dasar

Skema potongan melintang sebuah karburator tipe aliran turun venturi tetap single barel

Karburator pada dasarnya merupakan pipa terbuka dikedua ujungnya, dalam pipa ini udara bergerak menuju intake manifold menuju kedalam mesin/ruang bakar. Pipa ini berbentuk venturi, yaitu dari satu ujung permukaannya lebar lalu menyempit dibagian tengah kemudian melebar lagi di ujung satunya. Bentuk ini menyebabkan kecepatan aliran udara meningkat ketika melewati bagian yang sempit.Pada tipe venturi tetap, diujung karburator dilengkapi dengan katup udara berbentuk kupu-kupu yang disebut sebagai throttle valve (katup gas), yaitu semacam cakram yang dapat berputar untuk menutup dan membuka pergerakan aliran udara sehingga dapat mengatur banyaknya campuran udara/bahan bakar yang masuk dalam ruang bakar. Banyaknya campuran udara/bahan bakar inilah yang menentukan besar tenaga dan/atau kecepatan gerak mesin. Pedal gas, atau pada sepeda motor, grip gas dihubungkan langsung dengan katup ini melalui kabel. Namun pada tipe venturi bergerak, keberadaan katup ini tidak ditemukan karena yang mengatur besarnya aliran udara/bahan bakar adalah ukuran venturi itu sendiri yang dapat berubah-ubah. Pedal atau grip gas dihubungkan dengan piston yang mengatur celah sempit dalam venturiBahan bakar disemburkan kepada aliran udara melalui saluran-saluran kecil yang terdapat dalam ruang sempit dalam venturi. Tekanan rendah dari udara yang bergerak dalam venturi menarik bahan bakar dari mangkuk karburator sehingga bahan bakar ini tersembur dan ikut aliran udara. Saluran-saluran ini disebut jet.

Buka gas dari langsamKetika handle gas dibuka sedikit dari posisi tertutup penuh, ada bagian venturi yang memiliki tekanan lebih rendah akibat tertutup katup yang sedang berputar. Pada bagian ini karburator menyediakan jet yang lebih banyak dari bagian lainnya untuk meratakan distribusi bahan bakar dalam aliran udara.

Injeksi bahan bakarInjeksi bahan bakar adalah sebuah teknologi yang digunakan dalam mesin pembakaran dalam untuk mencampur bahan bakar dengan udara sebelum dibakar.Penggunaan injeksi bahan bakar akan meningkatkan tenaga mesin bila dibandingkan dengan penggunaan karburator, karena injektor membuat bahan bakar tercampur secara homogen. Hal ini, menjadikan injeksi bahan bakar dapat mengontrol pencampuran bahan bakar dan udara yang lebih tepat, baik dalam proporsi dan keseragaman.Injeksi bahan bakar dapat berupa mekanikal, elektronik atau campuran dari keduanya. Sistem awal berupa mekanikal, namun sekitar tahun 1980-an mulai banyak menggunakan sistem elektronik. Sistem elektronik modern menggunakan banyak sensor untuk memonitor kondisi mesin, dan sebuah unit kontrol elektronik menghitung jumlah bahan bakar yang diperlukan. Oleh karena itu, injeksi bahan bakar dapat meningkatkan efisiensi bahan bakar dan mengurangi polusi, dan juga memberikan tenaga keluaran yang lebih.

TujuanTujuan utama pemakaian sistem injeksi sangatlah beragam. Beberapa tujuan pemakaian itu antara lain: Keluaran tenaga kendaraan Efisiensi bahan bakar Performa Kemampuan untuk memakai bahan bakar alternatif Daya tahan Penggunaan kendaraan yang halus Biaya awal Biaya perawatan Kemampuan untuk didiagnosa Kemampuan dioperasikan di mana dan kapan saja Kepraktisan penyetelan mesin

KelebihanEmisi gas buang rendahTerjadinya pembakaran yang sempurna pada ruang bakar, sehingga emisi gas buang yang dihasilkan relatif lebih sedikit apalagi knalpot dilengkapi catalic converter.

Daya lebih besarKonstruksi injektor tepat pada intake manifold sehingga pencampuran bahan bakar lebih homogen.

Lebih hemat bahan bakarAir-fuel ratio sangat mempengaruhi kesempurnaan pembakaran pada mesin. Standar AFR pada motor adalah 14,7:1 yang artinya 14,7 udara dan 1 bensin. AFR dapat berubah-ubah, misalnya pada saat kondisi mesin dingin AFR 5:1, pada saat idle AFR 11:1, akselerasi 8:1, dan pada saat pemakaian ekonomis 40-60 km/jam AFR 16-18:1. Sehingga konsumsi bahan bakar pada motor injeksi lebih irit dibandingkan karburator.

Tidak memerlukan cok (choke)Injeksi bahan bakar dilengkapi sensor temperatur yang akan melaporkan suhu mesin ke engine control module (ECM) yang akan memerintahkan injektor untuk memperkaya campuran bensin pada suhu mesin dingin.

Perawatan yang lebih praktisTeknologi injeksi bahan bakar berkonsep bebas perawatan. Pada saat servis, pembersihan dilakukan hanya pada bagian penyaring udara, busi, dan pengaturan klep.

KekuranganAkselerasi kurang responsifTerjadinya proses yang panjang dari sensor pengatur jumlah udara dan laporan dari sensor-sensor lainnya, sehingga membutuhkan waktu yang lebih lama untuk berakselerasi.

Kurangnya tenaga ahliInjeksi bahan bakar termasuk teknologi baru, tidak semua bengkel umum mampu memperbaiki di saat terjadi permasalahan pada kendaraan.

Sensitif terhadap benturan/guncanganSemua perangkat terutama engine control module menggunakan elektronik, sehingga rentan mati apabila mengalami guncangan atau benturan keras. Pada saat terjadi hal tersebut, kendaraan berpeluang tidak bisa dihidupkan kembali, karena mengalami kerusakan pada engine control module. Biaya perbaikan membutuhkan biaya yang relatif masih mahal.

Sensitif bahan bakarUjung injektor berukuran mikro, sehingga sistem injeksi bahan bakar mudah terjadi penyumbatan karena bahan bakar yang kotor. Hal ini akan mempengaruhi kinerja kendaraan sehingga bahan bakar yang masuk ke dalam ruang bakar sedikit,

Sensitif kelistrikanKondisi kendaraan dilaporkan oleh sensor, dan sensor terhubung menggunakan kabel berkonektor. Konektor sering menjadi penyebab pelaporan sensor ke engine control module menjadi kacau. Pengiriman laporan sensor ke engine control module menggunakan sistem pengaman. Apabila konektor kabel terjadi korosi, hal ini akan meningkatkan sistem pengamanan sehingga laporan dari sensor mengakibatkan engine control module berfungsi dengan tidak tepat dan dapat mengakibatkan kerusakan yang disebabkan aliran listrik yang tidak stabil.

Berbagai Skema Sistem InjeksiInjeksi Titik Tunggal ( Single Point Fuel Injection )Injeksi titik tunggal menggunakan injektor tunggal pada throttle body ( dilokasi yang sama seperti yang digunakan oleh karburator).Saat itu diperkenalkan pada 1940-an di mesin pesawat (disebut karburator tekanan) dan pada 1980-an di dunia otomotif (disebut Throttle body-Injection oleh General Motors, Center Fuel Injection oleh Ford, PGM-CARB oleh Honda, dan EGI oleh Mazda). Setelah bahan bakar melewati intake (seperti sistem karburator) itu disebut "sistem injeksi berjenis basah".Untuk injeksi tunggal tidak memerlukan biaya yang mahal untuk perbaikannya. Berbagai komponen seperti karburator yang mendukung dengan pembersih udara, intake manifold, dan saluran bahan bakar routing bisa digunakan kembali. Ini kemudian didesain ulang dengan biaya peralatan komponennya. Injeksi titik tunggal telah banyak dipakai pada mobil penumpang buatan Amerika dan truk selama 1980-1995, dan beberapa mobil di Eropa menggunakan sistem injeksi titik tunggal pada awal dan pertengahan 1990-an.

Injeksi Kontinu ( Continuous Fuel injection )dalam sistem Injeksi Kontinu, bahan bakar mengalir setiap saat melalui injektor, tetapi pada saat tikat aliran yang variabel . Hal ini berbeda dengan kebanyakan sistem injeksi bahan bakar yang lainnya, yang menyediakan bahan bakar pada getaran yang singkat dengan durasi yang beragam,dengan tingkat yang konstan aliran udara setiap getaran. Sistem injeksi Kontinu bisa Multi-Point Injection atau single-point Injection, tetapi tidak langsung.Sistem injeksi kontinu dalam otomotif yang paling umum adalah Sistem Injeksi Bosch K-Jetronic,diperkenalkan pada tahun 1974. Bosch K-Jetronic digunakan selama bertahun-tahun antara tahun 1974 dan pertengahan 1990-an oleh BMW, Lamborghini, Ferrari, Mercedes-Benz, Volkswagen, Ford, Porsche, Audi, Saab, DeLorean, dan Volvo. Chrysler menggunakan sistem injeksi bahan bakar terus menerus pada zaman kekaisaran 1981-1983.

Injeksi Gerbang Pusat ( Central Port Fuel Injection )Dari Tahun 1992-1996 General Motors menerapkan sistem yang disebut Injeksi Gerbang Pusat ( Central Port Injection ). Sistem ini menggunakan pipa-pipa dengan klep kecil dari injektor pusat untuk menyemprotkan bahan bakar di setiap gerbang intake ketimbang ke pusat throttle-body. Tekanan bahan bakar ini mirip dengan sistem injeksi titik tunggal .

Injeksi Multiport (Multiport Fuel Injection)Bagian dan fungsi secara mendetailCatatan: Contoh di bawah ini berlaku pada mesin bensin injeksi elektronik modern. Bahan bakar selain bensin mungkin cocok, tapi hanya secara konsep saja.

Komponen sebuah injeksi elektronik

Gambar animasi dari penampang melintang sebuah injektor bahan bakar. Injektor Fuel Pump/Pompa bahan bakar Fuel Pressure Regulator Engine Control Module (ECM) termasuk sebuah komputer digital dan untaian untuk berkomunikasi dengan sensor dan control output. Wiring Harness Berbagai macam Sensor (Beberapa yang penting dicantumkan disini.) Crank/Cam Position: Hall effect sensor Airflow: Sensor MAF, dan Sensor MAP Exhaust Gas Oxygen: Sensor oksigen, Sensor EGO, Sensor UEGO

DeskripsiBagian utama dari sebuah sistem injeksi elektronik (EFI) adalah Unit Kontrol Mesin (Engine Control Unit/ECU), yang akan memonitor kegiatan mesin melalui berbagai sensor. Sensor-sensor ini akan dipergunakan oleh ECU untuk menghitung jumlah bahan bakar yang diinjeksikan dan mengontrol mesin dengan cara memanipulasi jumlah air dan udara yang masuk. Jumlah bahan bakar yang diinjeksikan tergantung dari beberapa faktor seperti suhu mesin, kecepatan rotasi mesin, dan komposisi gas buang.Injektor bahan bakar ini biasanya tertutup, dan terbuka untuk menginjeksikan bahan bakar ketika ada listrik yang mengalir di gulungan solenoid.

Kendaraan hibridaSebuah kendaran hibrida adalah sebuah kendaraan yang menggunakan dua atau banyak sumber tenaga untuk menggerakkan kendaraan tersebut.[1] Sebutan ini lebih umum merujuk pada kendaraan listrik hibrida (HEV) yang menggabungkan sebuah mesin pembakaran dalam dengan satu atau banyak motor listrik.

TenagaSumber tenaga kendaraan hibrida meliputi: Sistem penyimpanan tenaga isi ulang (RESS) dalam atau luar kendaraan Udara terkompresi Batubara, kayu atau bahan padat mudah terbakar lain Listrik Medan elektromagnet, Gelombang radio Gas alam terkompresi atau cair Tenaga manusia dengan mengayuh atau mendayung Hidrogen Nitrogen cair bahan bakar bensin atau diesel Surya Angin Panas buangan dari mesin pembakaran dalam.

Mesin jetMesin jet adalah sebuah jenis mesin pembakaran dalam menghirup udara yang sering digunakan dalam pesawat. Prinsip seluruh mesin jet pada dasarnya sama; mereka mempercepat massa (udara dan hasil pembakaran) ke satu arah dan dari hukum gerak Newton ketiga mesin akan mengalami dorongan ke arah yang berlawanan. Yang termasuk mesin jet antara lain turbojet, turbofan, rocket, ramjet, dan pump-jet.Mesin ini menghirup udara dari depan dan mengkompresinya. Udara digabungkan dengan bahan bakar, dan dibakar. Pembakaran menambah banyak peningkatan energi dari gas yang kemudian dibuang ke belakang mesin. Proses ini mirip dengan siklus empat-gerak, dengan induksi, kompresi, penyalaan, dan pembuangan terjadi secara berkelanjutan. Mesin menghasilkan dorongan karena percepatan udara yang melaluinya; gaya yang sama dan berlawanan yang dihasilkan adalah dorongan bagi mesin.Mesin jet mengambil massa udara yang relatif sedikit dan mempercepatnya dengan jumlah yang besar, di mana sebuah pendorong mengambil massa udara secara besar dan mempercepatnya dalam jumlah kecil. Pembuangan kecepatan tinggi dari mesin jet membuatnya efisien pada kecepatan tinggi (terutama kecepatan supersonik) dan ketinggian tinggi. Pada pesawat pelan dan yang membutuhkan jarak terbang pendek, pendorong yang menggunakan turbin gas, yang umumnya dikenal sebagai turboprop, lebih umum dan lebih efisien. Pesawat sangat kecil biasanya menggunakan mesin piston untuk menjalankan pendorong tetap turboprop kecil semakin lama semakin kecil dengan berkembangnya teknologi teknik.Efisiensi pembakaran sebuah mesin jet, seperti mesin pembakaran dalam lainnya, dipengaruhi besar oleh rasio volume udara yang dikompresi dengan volume pembuangan. Dalam mesin turbin kompresi udara dan bentuk "duct" yang melewati ruang pembakaran mencegah aliran balik dari situ dan membuat pembakaran berkelanjutan dimungkinkan dan proses pendorongan.Mesin turbojet modern modular dalam konsep dan rancangan. Inti penghasilan-tenaga utama, sama dalam seluruh mesin jet, disebut sebagai generator gas. Dan juga modul tambahan lainnya seperti gearset pengurang dorongan (turboprop/turboshaft), kipas lewat, dan "afterburner". Jenis alat tambahan dipasang berdasarkan penggunaan pesawat.

Mesin Turbofan

Diagram Mesin Turbofan

Mesin Turbofan adalah mesin yang umum dari turunan mesin-mesin turbin gas untuk menggerakkan pesawat terbang baik komersial maupun pesawat tempur. Mesin ini sebenarnya adalah sebuah mesin by-pass dimana sebagian dari udara dipadatkan dan disalurkan ke ruang pembakaran, sementara sisanya dengan kepadatan rendah disalurkan sekeliling bagian luar ruang pembakaran. Sekaligus udara tersebut berfungsi untuk mendinginkan suhu ruang pembakaran.Udara yang di by-pass ini ada yang dicampur dengan udara panas pembakaran pada turbin bagian belakang seperti pada mesin Rolls-Royce Spey yang digunakan pada pesawat Fokker F-28. Ada pula yang disalurkan dengan pipa-pipa halus ke atmosfer. Mesin yang menggunakan type ini contohnya adalah mesin RB211 yang digunakan pada pesawat Boeing B 747 dan GE CF6-80C2 yang digunakan pada pesawat DC-10 serta P &W JT 9D.Beberapa mesin yang menggunakan jenis mesin turbofan adalah Rolls-Royce Tay pada pesawat Fokker F-100 (yang dijuluki mesin fanjet), mesin Adour Mk871 yang digunakan pada pesawat tempur type Hawk Mk 100 dan Hawk Mk 200, pesawat tempur Jaguar dan Mitsubishi F-1 yang digunakan AU Jepang.Kemudian mesin high by-pass turbofan yang diterapkan pada mesin CFM56-5C2 yang dipakai oleh pesawat Airbus A340 dan mesin CFM56-3 yang dipakai pada Boeing B-737 serie 300, 400 dan 500 yang merupakan produk bersama antara GE dengan SNECMA dari Perancis.Pada pesawat militer, mesin turbofan yang diterapkan antara lain adalah mesin TF39-1C yang dipakai pada pesawat angkut raksasa C-5 Galaxy, kemudian GE F110 yang dipakai pada F-16, GE F118 yang bertype non-augmented turbofan yang diterapkan pada pesawat pembom stealth Northrop-Grumman B-2 dan pembom B-1 dengan mesin non augmented turbofan GE F101.

Mesin Turboprop

Diagram Mesin TurbopropMesin Turboprop adalah mesin turbojet dengan turbin tambahan yang dirancang sedemikian rupa untuk menyerap semburan sisa bahan bakar yang sebelumnya menggerakkan kompresor. Pada prakteknya selalu ada sisa semburan gas dan sisa inilah yang dipakai untuk mengerakkan turbin yang dihubungkan ke reduction gear, biasanya terletak di bagian mesin, memutar baling-baling.Jenis mesin ini irit bahan bakar untuk pesawat berkecepatan rendah/sedang dan terbang rendah (400 mil per jam/30.000 kaki). Melalui teknologi maju, selain irit juga menghasilkan tingkat kebisingan yang rendah dan mampu meluncurkan pesawat degnan kecepatan 400 mil per jam.Contoh mesin turboprop yang populer adalah mesin Rolls-Royce Dart yang dipakai pada pesawat Britih Aerospace atau BAe (dulu Hawker Siddeley) HS-748 dan Fokker F-27. Kemudian mesin Rolls-Royce Tyne yang digunakan pada pesawat jenis Transall C-160 dan BAe Vanguard.Mesin jenis ini tenaganya diukur dengan total equivalent horsepower (tehp) atau kilowatt(kW)-shaft horsepower (shp) plus sisa daya dorong. Sebagai contoh, mesin Tyne dengan take-off power 4.985 tehp (3.720 kW) sampai 6.100 tehp (4.550 kW) merupakan mesin turpboprop yang paling kuat dan irit bahan bakar.

Mesin Turboshaft

Diagram Mesin Turboshaft, mesin ini umumnya digunakan untuk menggerakkan helikopterMesin Turboshaft sebenarnya adalah mesin turboprop tanpa baling-baling. Power turbin-nya dihubungkan langsung dengan reduction gearbox atau ke sebuah shaft (sumbu) sehingga tenaganya diukur dalam shaft horsepower (shp) atau kilowatt (kW).Jenis mesin ini umumnya digunakan untuk menggerakkan helikopter, yakni menggerakan rotor utama maupun rotor ekor (tail rotor) selain itu juga digunakan dalam sektor industri dan maritim termask untuk pembangkit listrik, stasiun pompa gas dan minyak, hovercraft, dan kapal.Contoh mesin ini adalah GEM/RR 1004 bertenaga 900 shp yang diterapkan pada helikopter type Lynx dan mesin Gnome 1.660 shp (1.238 kW) pada helikopter Sea King. Sedangkan versi Industri lain adalah mesin pembangkit listrik 25-30 MW Rolls-Royce RB211 dengan 35.000-40.000 shp.Contoh lain adalah mesin GE T64 yang dipakai pada helikopter Sikorsy CH-53, pesawat amfibi Shin Meiwa PS-1, G-222 Aeritalia-pesaing CN-235 dan helikopter Lockheed AH-56A.

Turbin gasGas-turbine engine adalah suatu alat yang memanfaatkan gas sebagai fluida untuk memutar turbin dengan pembakaran internal. Didalam turbin gas energi kinetik dikonversikan menjadi energi mekanik melalui udara bertekanan yang memutar roda turbin sehingga menghasilkan daya. Sistem turbin gas yang paling sederhana terdiri dari tiga komponen yaitu kompresor, ruang bakar dan turbin gas.

Mesin ini memiliki kompresor radial tahapan-tunggal dan turbin, recuperator, dan foil bearings.

Energi ditambahkan di arus gas di pembakar, di mana udara dicampur dengan bahan bakar dan dinyalakan. Pembakaran meningkatkan suhu, kecepatan dan volume dari aliran gas. Kemudian diarahkan melalui sebuah penyebar (nozzle) melalui baling-baling turbin, memutar turbin dan mentenagai kompresor.Energi diambil dari bentuk tenaga shaft, udara terkompresi dan dorongan, dalam segala kombinasi, dan digunakan untuk mentenagai pesawat terbang, kereta, kapal, generator, dan bahkan tank.

Teori operasiTurbin gas dijelaskan secara termodinamika oleh Siklus Brayton, di mana udara dikompresi isentropic sekutu, pembakaran terjadi pada tekanan konstan, dan ekspansi terjadi di turbin isentropically kembali untuk tekanan awal.Dalam prakteknya, gesekan dan turbulensi menyebabkan:1. Isentropic non-kompresi: untuk suatu tekanan secara keseluruhan rasio, suhu pengiriman kompresor lebih tinggi dari ideal.2. Non-isentropic ekspansi: walaupun penurunan suhu turbin yang diperlukan untuk menggerakkan kompresor tidak terpengaruh, tekanan terkait rasio lebih besar, yang mengurangi ekspansi yang tersedia untuk menyediakan kerja yang bermanfaat.3. Tekanan kerugian dalam asupan udara, combustor dan knalpot: mengurangi ekspansi yang tersedia untuk menyediakan kerja yang bermanfaat.Seperti semua siklus mesin panas s, suhu pembakaran yang lebih tinggi berarti lebih besar efisiensi. Faktor pembatas adalah kemampuan baja, nikel, keramik, atau materi lain yang membentuk mesin untuk menahan panas dan tekanan. Teknik cukup masuk ke bagian turbin menjaga dingin. Kebanyakan turbin juga mencoba untuk memulihkan knalpot panas, yang sebaliknya adalah energi terbuang. Recuperator s adalah heat exchanger s yang lulus knalpot panas ke udara terkompresi, sebelum pembakaran. Gabungan siklus desain lulus limbah panas ke uap turbin sistem. Dan gabungan panas dan kekuasaan (co-generation) menggunakan limbah panas untuk produksi air panas.Mekanis, turbin gas dapat kurang kompleks daripada pembakaran piston mesin. Sederhana turbin mungkin memiliki satu bergerak bagian: poros / kompresor / turbin / alternatif rotor perakitan (lihat gambar di atas), belum termasuk sistem bahan bakar. Namun, manufaktur presisi yang diperlukan untuk komponen dan paduan tahan temperatur yang diperlukan untuk efisiensi yang tinggi sering membuat pembangunan turbin sederhana lebih rumit daripada mesin piston.Lebih canggih turbin (seperti yang ditemukan di zaman modern mesin jet) dapat memiliki beberapa shaft (kelos), ratusan turbin baling, bergerak stator blades, dan sistem yang luas kompleks pipa, combustors dan penukar panas.Sebagai aturan umum, semakin kecil mesin semakin tinggi tingkat perputaran poros (s) yang diperlukan untuk mempertahankan kecepatan tertinggi. Kecepatan sudu turbin menentukan tekanan maksimum yang dapat diperoleh, hal ini menghasilkan daya maksimum yang mungkin tergantung pada ukuran mesin. Mesin jet s beroperasi sekitar 10.000 rpm dan mikro turbin s sekitar 100.000 rpm.Thrust bantalan s dan jurnal bantalan adalah bagian penting dari desain. Secara tradisional, mereka telah hidrodinamik minyak bantalan, atau minyak-cooled bola bantalan s. Bantalan ini sedang dikalahkan oleh foil bantalan s, yang telah berhasil digunakan dalam turbin mikro dan unit daya tambahan s. Prinsip Kerja Sistem Turbin Gas (Gas-Turbine Engine)Udara masuk kedalam kompresor melalui saluran masuk udara (inlet). Kompresor berfungsi untuk menghisap dan menaikkan tekanan udara tersebut, sehingga temperatur udara juga meningkat. Kemudian udara bertekanan ini masuk kedalam ruang bakar. Di dalam ruang bakar dilakukan proses pembakaran dengan cara mencampurkan udara bertekanan dan bahan bakar. Proses pembakaran tersebut berlangsung dalam keadaan tekanan konstan sehingga dapat dikatakan ruang bakar hanya untuk menaikkan temperatur. Gas hasil pembakaran tersebut dialirkan ke turbin gas melalui suatu nozel yang berfungsi untuk mengarahkan aliran tersebut ke sudu-sudu turbin. Daya yang dihasilkan oleh turbin gas tersebut digunakan untuk memutar kompresornya sendiri dan memutar beban lainnya seperti generator listrik, dll. Setelah melewati turbin ini gas tersebut akan dibuang keluar melalui saluran buang (exhaust).Secara umum proses yang terjadi pada suatu sistem turbin gas adalah sebagai berikut: Pemampatan (compression) udara di hisap dan dimampatkan Pembakaran (combustion) bahan bakar dicampurkan ke dalam ruang bakar dengan udara kemudian di bakar. Pemuaian (expansion) gas hasil pembakaran memuai dan mengalir ke luar melalui nozel (nozzle). Pembuangan gas (exhaust) gas hasil pembakaran dikeluarkan lewat saluran pembuangan.Pada kenyataannya, tidak ada proses yang selalu ideal, tetap terjadi kerugiankerugian yang dapat menyebabkan turunnya daya yang dihasilkan oleh turbin gas dan berakibat pada menurunnya performa turbin gas itu sendiri. Kerugian-kerugian tersebut dapat terjadi pada ketiga komponen sistem turbin gas. Sebab-sebab terjadinya kerugian antara lain: Adanya gesekan fluida yang menyebabkan terjadinya kerugian tekanan (pressure losses) di ruang bakar. Adanya kerja yang berlebih waktu proses kompresi yang menyebabkan terjadinya gesekan antara bantalan turbin dengan angin. Berubahnya nilai Cp dari fluida kerja akibat terjadinya perubahan temperatur dan perubahan komposisi kimia dari fluida kerja. Adanya mechanical loss, dsb.

Klasifikasi Turbin GasTurbin gas dapat dibedakan berdasarkan siklusnya, kontruksi poros dan lainnya. Menurut siklusnya turbin gas terdiri dari: Turbin gas siklus tertutup (Close cycle) Turbin gas siklus terbuka (Open cycle)Perbedaan dari kedua tipe ini adalah berdasarkan siklus fluida kerja. Pada turbin gas siklus terbuka, akhir ekspansi fluida kerjanya langsung dibuang ke udara atmosfir, sedangkan untuk siklus tertutup akhir ekspansi fluida kerjanya didinginkan untuk kembali ke dalam proses awal.Dalam industri turbin gas umumnya diklasifikasikan dalam dua jenis yaitu:

Turbin Gas Poros Tunggal (Single Shaft)Turbin jenis ini digunakan untuk menggerakkan generator listrik yang menghasilkan energi listrik untuk keperluan proses di industri.

Turbin Gas Poros Ganda (Double Shaft)Turbin jenis ini merupakan turbin gas yang terdiri dari turbin bertekanan tinggi dan turbin bertekanan rendah, dimana turbin gas ini digunakan untuk menggerakkan beban yang berubah seperti kompresor pada unit proses.

Siklus-Siklus Turbin GasTiga siklus turbin gas yang dikenal secara umum yaitu:1. Siklus EricsonMerupakan siklus mesin kalor yang dapat balik (reversible) yang terdiri dari dua proses isotermis dapat balik (reversible isotermic) dan dua proses isobarik dapat balik (reversible isobaric). Proses perpindahan panas pada proses isobarik berlangsung di dalam komponen siklus internal (regenerator), dimana effisiensi termalnya adalah: hth = 1 T1/Th, dimana T1 = temperatur buang dan Th = temperatur panas.2. Siklus StirlingMerupakan siklus mesin kalor dapat balik, yang terdiri dari dua proses isotermis dapat balik (isotermal reversible) dengan volume tetap (isokhorik). Efisiensi termalnya sama dengan efisiensi termal pada siklus Ericson.3. Siklus BraytonSiklus ini merupakan siklus daya termodinamika ideal untuk turbin gas, sehingga saat ini siklus ini yang sangat populer digunakan oleh pembuat mesin turbine atau manufacturer dalam analisa untuk performance upgrading. Siklus Brayton ini terdiri dari proses kompresi isentropik yang diakhiri dengan proses pelepasan panas pada tekanan konstan. Pada siklus Bryton tiap-tiap keadaan proses dapat dianalisa secara berikut:

Siklus BraytonProses 1 ke 2 (kompresi isentropik). Kerja yang dibutuhkan oleh kompresor: Wc = ma (h2 h1). Proses 2 ke 3, pemasukan bahan bakar pada tekanan konstan. Jumlah kalor yang dihasilkan: Qa = (ma + mf) (h3 h2). Proses 3 ke 4, ekspansi isentropik didalam turbin. Daya yang dibutuhkan turbin: WT = (ma + mf) (h3 h4). Proses 4 ke 1, pembuangan panas pada tekanan konstan ke udara. Jumlah kalor yang dilepas: QR = (ma + mf) (h4 h1)

Perkembangan Gas TurbinDisain pertama turbin gas dibuat oleh John Wilkins seorang Inggris pada tahun 1791. Sistem tersebut bekerja dengan gas hasil pembakaran batu bara, kayu atau minyak, kompresornya digerakkan oleh turbin dengan perantaraan rantai roda gigi. Pada tahun 1872, Dr. F. Stolze merancang sistem turbin gas yang menggunakan kompresor aksial bertingkat ganda yang digerakkan langsung oleh turbin reaksi tingkat ganda. Tahun 1908, sesuai dengan konsepsi H. Holzworth, dibuat suatu sistem turbin gas yang mencoba menggunakan proses pembakaran pada volume konstan. Tetapi usaha tersebut dihentikan karena terbentur pada masalah konstruksi ruang bakar dan tekanan gas pembakaran yang berubah sesuai beban. Tahun 1904, Societe des Turbomoteurs di Paris membuat suatu sistem turbin gas yang konstruksinya berdasarkan disain Armengaud dan Lemate yang menggunakan bahan bakar cair. Temperatur gas pembakaran yang masuk sekitar 450 C dengan tekanan 45 atm dan kompresornya langsung digerakkan oleh turbin.Selanjutnya, pada tahun 1935 sistem turbin gas mengalami perkembangan yang pesat dimana diperoleh efisiensi sebesar kurang lebih 15%. Pesawat pancar gas yang pertama diselesaikan oleh British Thomson Houston Co pada tahun 1937 sesuai dengan konsepsi Frank Whittle (tahun 1930).

Komponen Turbin GasTurbin gas tersusun atas komponen-komponen utama seperti air inlet section, compressor section, combustion section, turbine section, dan exhaust section. Sedangkan komponen pendukung turbin gas adalah starting equipment, lube-oil system, cooling system, dan beberapa komponen pendukung lainnya. Berikut ini penjelasan tentang komponen utama turbn gas:Air Inlet Section.Berfungsi untuk menyaring kotoran dan debu yang terbawa dalam udara sebelum masuk ke kompresor. Bagian ini terdiri dari: Air Inlet Housing, merupakan tempat udara masuk dimana didalamnya terdapat peralatan pembersih udara. Inertia Separator, berfungsi untuk membersihkan debu-debu atau partikel yang terbawa bersama udara masuk. Pre-Filter, merupakan penyaringan udara awal yang dipasang pada inlet house. Main Filter, merupakan penyaring utama yang terdapat pada bagian dalam inlet house, udara yang telah melewati penyaring ini masuk ke dalam kompresor aksial. Inlet Bellmouth, berfungsi untuk membagi udara agar merata pada saat memasuki ruang kompresor. Inlet Guide Vane, merupakan blade yang berfungsi sebagai pengatur jumlah udara yang masuk agar sesuai dengan yang diperlukan

Compressor Section.Komponen utama pada bagian ini adalah aksial flow compressor, berfungsi untuk mengkompresikan udara yang berasal dari inlet air section hingga bertekanan tinggi sehingga pada saat terjadi pembakaran dapat menghasilkan gas panas berkecepatan tinggi yang dapat menimbulkan daya output turbin yang besar. Aksial flow compressor terdiri dari dua bagian yaitu: Compressor Rotor Assembly. Merupakan bagian dari kompresor aksial yang berputar pada porosnya. Rotor ini memiliki 17 tingkat sudu yang mengompresikan aliran udara secara aksial dari 1 atm menjadi 17 kalinya sehingga diperoleh udara yang bertekanan tinggi. Bagian ini tersusun dari wheels, stubshaft, tie bolt dan sudu-sudu yang disusun kosentris di sekeliling sumbu rotor. Compressor Stator. Merupakan bagian dari casing gas turbin yang terdiri dari: Inlet Casing, merupakan bagian dari casing yang mengarahkan udara masuk ke inlet bellmouth dan selanjutnya masuk ke inlet guide vane. Forward Compressor Casing, bagian casing yang didalamnya terdapat empat stage kompresor blade.Aft Casing, bagian casing yang didalamnya terdapat compressor blade tingkat 5-10.Discharge Casing, merupakan bagian casing yang berfungsi sebagai tempat keluarnya udara yang telah dikompresi.

Combustion Section.Pada bagian ini terjadi proses pembakaran antara bahan bakar dengan fluida kerja yang berupa udara bertekanan tinggi dan bersuhu tinggi. Hasil pembakaran ini berupa energi panas yang diubah menjadi energi kinetik dengan mengarahkan udara panas tersebut ke transition pieces yang juga berfungsi sebagai nozzle. Fungsi dari keseluruhan sistem adalah untuk mensuplai energi panas ke siklus turbin. Sistem pembakaran ini terdiri dari komponen-komponen berikut yang jumlahnya bervariasi tergantung besar frame dan penggunaan turbin gas. Komponen-komponen itu adalah: Combustion Chamber, berfungsi sebagai tempat terjadinya pencampuran antara udara yang telah dikompresi dengan bahan bakar yang masuk. Combustion Liners, terdapat didalam combustion chamber yang berfungsi sebagai tempat berlangsungnya pembakaran. Fuel Nozzle, berfungsi sebagai tempat masuknya bahan bakar ke dalam combustion liner. Ignitors (Spark Plug), berfungsi untuk memercikkan bunga api ke dalam combustion chamber sehingga campuran bahan bakar dan udara dapat terbakar. Transition Fieces, berfungsi untuk mengarahkan dan membentuk aliran gas panas agar sesuai dengan ukuran nozzle dan sudu-sudu turbin gas. Cross Fire Tubes, berfungsi untuk meratakan nyala api pada semua combustion chamber. Flame Detector, merupakan alat yang dipasang untuk mendeteksi proses pembakaran terjadi.

Turbin Section.Turbin section merupakan tempat terjadinya konversi energi kinetik menjadi energi mekanik yang digunakan sebagai penggerak compresor aksial dan perlengkapan lainnya. Dari daya total yang dihasilkan kira-kira 60% digunakan untuk memutar kompresornya sendiri, dan sisanya digunakan untuk kerja yang dibutuhkan. Komponen-komponen pada turbin section adalah sebagai berikut: Turbin Rotor Case First Stage Nozzle, yang berfungsi untuk mengarahkan gas panas ke first stage turbine wheel. First Stage Turbine Wheel, berfungsi untuk mengkonversikan energi kinetik dari aliran udara yang berkecepatan tinggi menjadi energi mekanik berupa putaran rotor. Second Stage Nozzle dan Diafragma, berfungsi untuk mengatur aliran gas panas ke second stage turbine wheel, sedangkan diafragma berfungsi untuk memisahkan kedua turbin wheel. Second Stage Turbine, berfungsi untuk memanfaatkan energi kinetik yang masih cukup besar dari first stage turbine untuk menghasilkan kecepatan putar rotor yang lebih besar.

Exhaust Section.Exhaust section adalah bagian akhir turbin gas yang berfungsi sebagai saluran pembuangan gas panas sisa yang keluar dari turbin gas. Exhaust section terdiri dari beberapa bagian yaitu: (1) Exhaust Frame Assembly, dan (2)Exhaust gas keluar dari turbin gas melalui exhaust diffuser pada exhaust frame assembly, lalu mengalir ke exhaust plenum dan kemudian didifusikan dan dibuang ke atmosfir melalui exhaust stack, sebelum dibuang ke atmosfir gas panas sisa tersebut diukur dengan exhaust thermocouple dimana hasil pengukuran ini digunakan juga untuk data pengontrolan temperatur dan proteksi temperatur trip. Pada exhaust area terdapat 18 buah termokopel yaitu, 12 buah untuk temperatur kontrol dan 6 buah untuk temperatur trip.

Komponen penunjang turbin gasAdapun beberapa komponen penunjang dalam sistem turbin gas adalah sebagai berikut: Starting Equipment.Berfungsi untuk melakukan start up sebelum turbin bekerja. Jenis-jenis starting equipment yang digunakan di unit-unit turbin gas pada umumnya adalah:1. Diesel Engine, (PG 9001A/B)2. Induction Motor, (PG-9001C/H dan KGT 4X01, 4X02 dan 4X03)3. Gas Expansion Turbine (Starting Turbine) Coupling dan Accessory Gear.Berfungsi untuk memindahkan daya dan putaran dari poros yang bergerak ke poros yang akan digerakkan. Ada tiga jenis coupling yang digunakan, yaitu:1. Jaw Cluth, menghubungkan starting turbine dengan accessory gear dan HP turbin rotor.2. Accessory Gear Coupling, menghubungkan accessory gear dengan HP turbin rotor.3. Load Coupling, menghubungkan LP turbin rotor dengan kompressor beban.Fuel System.Bahan bakar yang digunakan berasal dari fuel gas system dengan tekanan sekitar 15 kg/cm2. Fuel gas yang digunakan sebagai bahan bakar harus bebas dari cairan kondensat dan partikel-partikel padat. Untuk mendapatkan kondisi tersebut diatas maka sistem ini dilengkapi dengan knock out drum yang berfungsi untuk memisahkan cairan-cairan yang masih terdapat pada fuel gas.

Lube Oil System.Lube oil system berfungsi untuk melakukan pelumasan secara kontinu pada setiap komponen sistem turbin gas. Lube oil disirkulasikan pada bagian-bagian utama turbin gas dan trush bearing juga untuk accessory gear dan yang lainnya. Lube oil system terdiri dari:1. Oil Tank (Lube Oil Reservoir)2. Oil Quantity3. Pompa4. Filter System5. Valving System6. Piping System7. Instrumen untuk oilPada turbin gas terdapat tiga buah pompa yang digunakan untuk mensuplai lube oil guna keperluan lubrikasi, yaitu: Main Lube Oil Pump, merupakan pompa utama yang digerakkan oleh HP shaft pada gear box yang mengatur tekanan discharge lube oil. Auxilary Lube Oil Pump, merupakan pompa lube oil yang digerakkan oleh tenaga listrik, beroperasi apabila tekanan dari main pump turun. Emergency Lube Oil Pump, merupakan pompa yang beroperasi jika kedua pompa diatas tidak mampu menyediakan lube oil.

Cooling System.Sistem pendingin yang digunakan pada turbin gas adalah air dan udara. Udara dipakai untuk mendinginkan berbagai komponen pada section dan bearing. Komponen-komponen utama dari cooling system adalah: Off base Water Cooling Unit Lube Oil Cooler Main Cooling Water Pump Temperatur Regulation Valve Auxilary Water Pump Low Cooling Water Pressure Swich

Pembangkit listrik tenaga uap dan gasPLTGU merupakan suatu instalasi peralatan yang berfungsi untuk mengubah energi panas (hasil pembakaran bahan bakar dan udara) menjadi energi listrik yang bermanfaat. Pada dasarnya, sistem PLTGU ini merupakan penggabungan antara PLTG dan PLTU. PLTU memanfaatkan energi panas dan uap dari gas buang hasil pembakaran di PLTG untuk memanaskan air di HRSG (Heat Recovery Steam Generator), sehingga menjadi uap jenuh kering. Uap jenuh kering inilah yang akan digunakan untuk memutar sudu (baling-baling) turbin uap.

Pembangkit listrik tenaga uap'Pembangkit listrik tenaga uap (PLTU) adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik.Bentuk utama dari pembangkit listrik jenis ini adalah Generator yang dihubungkan ke turbin yang digerakkan oleh tenaga kinetik dari uap panas/kering. Pembangkit listrik tenaga uap menggunakan berbagai macam bahan bakar terutama batu bara dan minyak bakar serta MFO untuk start up awal.

Efisiensi termalDalam termodinamika, efisiensi termal adalah ukuran tanpa dimensi yang menunjukkan performa peralatan termal seperti mesin pembakaran dalam dan sebagainya. Panas yang masuk adalah energi yang didapatkan dari sumber energi. Output yang diinginkan dapat berupa panas atau kerja, atau mungkin keduanya. Jadi, termal efisiensi dapat dirumuskan dengan

Berdasarkan hukum pertama termodinamika, output tidak bisa melebihi input, sehingga

Ketika ditulis dalam persentase, efisiensi termal harus berada di antara 0% dan 100%. Karena inefisiensi seperti gesekan, hilangnya panas, dan faktor lainnya, efisiensi termal mesin tidak pernah mencapai 100%. Seperti contoh, mesin mobil bensin memiliki efisiensi 25%, dan mesin pembangkit listrik tenaga batu bara yang besar memiliki efisiensi maksimum 46%. Mesin diesel terbesar di dunia memiliki efisiensi maksimum 51,7%.Efisiensi CarnotHukum kedua termodinamika menaruh batas fundamental pada efisiensi termal dari mesin kalor. Dan secara mengejutkan, bahkan mesin ideal yang tak memiliki gesekan tidak bisa mengubah seluruhnya panas yang masuk menjadi kerja. Faktor yang membatasi diantaranya temperatur panas yang masuk ke mesin, , dan temperatur pembuangan, , yang diukur dengan suhu mutlak Kelvin.

Batas nilai ini dinamakan efisiensi siklus Carnot karena siklus yang menggerakannya dinamakan siklus Carnot. Di dunia ini belum ada mesin kalor yang bisa melebihi efisiensi ini, bagaimanapun desainnya.Contoh dari adalah temperatur dari uap panas yang menggerakkan turbin pembangkit listrik, atau temperatur bahan bakar yang dibakar di mesin pembakaran dalam. biasanya adalah temperatur di mana mesin itu berada, atau temperatur air danau / laut di mana panas dari pembangkit listrik dibuang.Dalam kenyataannya, tidak ada mesin yang mampu mengoperasikan siklus yang menyamai efisiensi mesin Carnot. Mesin Carnot hanya berlaku pada mesin yang menggunakan kalor sebagai inputnya. Mesin yang tidak membakar bahan bakar untuk menjadikannya kerja seperti fuel cell, memiliki efisiensi yang melebihi efisiensi Carnot.Karena bergantung pada temperatur di mana mesin berada, peran pendingin mesin sangat berguna untuk meningkatkan efisiensi mesin.

Konversi energiUntuk alat konversi seperti pemanas ruangan, boiler, atau pembakar, efisiensi termalnya dirumuskan dengan.Sehingga untuk boiler yang memproduksi 210 kW panas dengan input 300 kW bahan bakar memiliki efisiensi sebesar 210/300=0,70, atau 70%. Ini berarti, 30% energi terbuang ke lingkungan.

Pompa kalorPompa kalor, pendingin ruangan, dan lemari es menggunakan kerja untuk memindahkan panas dari area yang lebih dingin ke area yang lebih panas, sehingga fungsi kerjanya berlawanan dengan mesin kalor. Efisiensi mereka diukur dengan koefisien performa (COP). Karena pompa kalor pada dasarnya adalah konsep mesin kalor yang dibalik, efisiensi mereka juga dibatasi oleh efisiensi siklus Carnot. Namun karena pompa kalor memindahkan kalor dengan menggunakan kerja, bukan menggunakan kalor untuk menghasilkan kerja, maka efisiensi mereka dapat melebihi 100%.

Bahan bakar & pembakaranPage 5