Top Banner
MAKALAH BIOKIMIA “METABOLISME ENERGI” Disusun oleh: KELOMPOK 3 Melawati Rizki Hawa 1150402001111 06 Riko Aditya Pratama 1150402001111 07 Achmad Eka S. 1150402001111 08 Asri Ismahmudi 1150402011110 87 Mohammad Wildan 1150402011110 88 Rudolfo Garcia 1150402011110 89
25

Metabolisme Energi Makalah

Nov 25, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

MAKALAH BIOKIMIAMETABOLISME ENERGI

Disusun oleh:KELOMPOK 3Melawati Rizki Hawa115040200111106

Riko Aditya Pratama115040200111107

Achmad Eka S.115040200111108

Asri Ismahmudi115040201111087

Mohammad Wildan115040201111088

Rudolfo Garcia115040201111089

PROGRAM STUDI AGROEKOTEKNOLOGIFAKULTAS PERTANIANUNIVERSITAS BRAWIJAYAMALANG2011BAB IPENDAHULUAN

1.1. Latar BelakangBila ditinjau pada tingkat sel, tubuh manusia disusun dari 100 triliun sel dan mempunyai sifat dasar tertentu yang sama. Setiap sel digabung oleh struktur penyokong intrasel, dan secara khusus beradaptasi untuk melakukan fungsi tertentu. Dari total sel yang ada tersebut, 25 triliun sel merupakan sel darah merah yang mempunyai fungsi sebagai alat transportasi bahan makanan dan oksigen di dalam tubuh dan membawa karbon dioksida menuju paru-paru untuk dikeluarkan. Semua sel menggunakan oksigen sebagai salah satu zat utama untuk membentuk energi, dimana mekanisme umum perubahan zat gizi menjadi energi di semua sel pada dasarnya sama.Bahan makanan yang berupa karbohidrat, lemak, dan protein yang dioksidasi akan menghasilkan energi, dimana energi tersebut digunakan untuk membentuk sejumlah besar Adenosine TriPosphate (ATP), dan selanjutnya ATP tersebut digunakan sebagai sumber energi bagi banyak fungsi sel. Sehingga ATP merupakan senyawa kimia labil yang terdapat di semua sel, dan semua mekanisme fisiologis yang memerlukan energi untuk kerjanya mendapatkan energi langsung dari ATP.Metabolisme adalah serangkaian reaksi kimia yang terjadi dalam organisme hidup untuk mempertahankan hidup. Proses ini memungkinkan organisme untuk tumbuh dan berkembang biak, menjaga struktur mereka, dan merespon lingkungan mereka. Metabolisme biasanya dibagi menjadi dua kategori. Katabolisme memecah bahan organik, misalnya untuk energi panen dalam respirasi selular. Anabolisme, menggunakan energi untuk membangun komponen sel seperti protein dan asam nukleat.

1.2. Tujuan1.2.1. Untuk memahami mengenai metabolisme energi1.2.2. Untuk memahami mengenai apa itu ATP beserta perannya1.2.3. Untuk mengetahui ATP yang dihasilkan dari proses fotosintesis1.2.4. Untuk memahami proses fosforilasi oksidatif

BAB IIISI

2.1. Pengertian Metabolisme EnergiSeperti yang kita ketahui dalam proses penyediaan energi, baik pada tumbuhan maupun manusia, melalui rentetan reaksi kimia. Jika seluruh reaksi kimia terjadi dalam sel makhluk hidup, maka reaksinya disebut reaksi biokima. Seluruh proses atau reaksi biokimia yang terjadi dalam sel disebut metabolisme. Metabolisme merupakan rangkaian reaksi kimia yang diawali oleh substrat awal dan diakhiri dengan produk akhir, yang terjadi dalam sel. Perlu Anda ketahui reaksi tersebut meliputi reaksi penyusunan energi (anabolisme) dan reaksi penggunaan energi (katabolisme). Dalam reaksi biokimia terjadi perubahan energi dari satu bentuk ke bentuk yang lain, misalnya energi kimia dalam bentuk senyawa Adenosin Trifosfat (ATP) diubah menjadi energi gerak untuk melakukan suatu aktivitas seperti bekerja, berlari, jalan, dan lain-lain.Proses metabolisme yang terjadi di dalam sel makhluk hidup seperti pada tumbuhan dan manusia, melibatkan sebagian besar enzim (katalisator) baik berlangsung secara sintesis (anabolisme) dan respirasi (katabolisme). Apa peran enzim di dalam reaksi kimia yang terjadi di dalam sel? Pada saat berlangsungnya peristiwa reaksi biokimia di dalam sel, enzim bekerja secara spesifik. Enzim mempercepat reaksi kimia yang menghasilkan senyawa ATP dan senyawa-senyawa lain yang berenergi tinggi seperti pada proses respirasi, fotosintesis, kemosintesis, sintesis protein, dan lemak.Senyawa Adenosin Trifosfat (ATP) merupakan molekul kimia berenergi tinggi. Berasal dari manakah energi itu? Molekul Adenosin Trifosfat (ATP) berasal dari perubahan glukosa melalui serangkaian reaksi kimia yang panjang dan kompleks. Energi yang terkandung dalam glukosa tersebut berupa energi ikatan kimia yang berasal dari proses transformasi energi sinar matahari. Transformasi energi tersebut dalam biologi dapat dijelaskan sebagai berikut.1. Selama proses fotosintesis, energi matahari yaitu dalam bentuk radiasi atau pancaran cahaya matahari matahari berubah menjadi energi kimia dalam ikatan senyawa organik. Lambang f merupakan frekuensi cahaya dan lambang h merupakan konstanta Planch, yang berkaitan dengan energi dan frekuensi.2. Pada waktu dalam respirasi sel, energi kimia dalam senyawa kimia berubah menjadi persenyawaan yang berupa ATP.3. Dalam sel, energi kimia ikatan fosfat yang kaya akan energi (ATP) dapat difungsikan untuk kerja mekanis, listrik, dan kimia.4. Pada akhirnya energi mengalir ke sekeliling sel dan hilang sebagai energi panas dalam bentuk entropi.

2.2. Adenosina Trifosfat (ATP)Adenosina trifosfat (ATP) adalah suatu nukleotida yang dalam biokimia dikenal sebagai "satuan molekular" pertukaran energi intraselular; artinya, ATP dapat digunakan untuk menyimpan dan mentranspor energi kimia dalam sel. ATP juga berperan penting dalam sintesis asam nukleat. Molekul ATP juga digunakan untuk menyimpan energi yang dihasilkan tumbuhan dalam respirasi selular. ATP yang berada di luar sitoplasma atau di luar sel dapat berfungsi sebagai agen signaling yang memengaruhi pertumbuhan dan respon terhadap perubahan lingkungan.ATP ini ditemukan pada tahun 1929 oleh Karl Lohmann, namun struktur yang benar tidak ditentukan sampai beberapa tahun kemudian. Saat itu diusulkan untuk menjadi energi utama. Ini buatan pertama kali disintesis oleh Alexander Todd pada tahun 1948.ATP terdiri dari adenosina dan tiga gugus fosfat. Rumus empirisnya adalah C10H16N5O13P3, dan rumus kimianya adalah C10H8N4O2NH2(OH)2(PO3H)3H, dengan bobot molekul 507.184 u. Gugus fosforil pada AMP disebut gugus alfa, beta, and gamma fosfat.ATP dapat dihasilkan melalui berbagai proses selular, namun seringnya dijumpai di mitokondria melalui proses fosforilasi oksidatif dengan bantuan enzim pengkatalisis ATP sintetase. Pada tumbuhan, proses ini lebih sering dijumpai di dalam kloroplas melalui proses fotosintesis. Bahan bakar utama sintesis ATP adalah glukosa dan asam lemak. Mula-mula, glukosa dipecah menjadi asam piruvat di dalam sitosol dalam reaksi glikolisis. Dari satu molekul glukosa akan dihasilkan dua molekul ATP. Tahap akhir dari sintesis ATP terjadi dalam mitokondria dan menghasilkan total 36 ATP.Jumlah total ATP dalam tubuh manusia berkisar pada 0,1 mol. Energi yang digunakan oleh sel manusia untuk melakukan hidrolisis dapat berjumlah 200 hingga 300 mol ATP per hari. Artinya, setiap molekul ATP didaur ulang sebanyak 2000 hingga 3000 kali setiap hari. ATP tidak dapat disimpan, karenanya sintesis harus segera diikuti dengan penggunaan.ATP terdiri dari adenosin terdiri dari adenin cincin dan ribosa gula dan tiga fosfat kelompok (trifosfat).. Kelompok yang phosphoryl, dimulai dengan kelompok paling dekat dengan ribosa, yang disebut sebagai alpha (), beta (), dan gamma () fosfat. ATP sangat larut dalam air dan sangat stabil dalam larutan pH antara 6,8-7,4, tetapi cepat dihidrolisis pada pH yang ekstrim. Akibatnya, ATP paling baik disimpan sebagai garam anhidrat. [8]ATP adalah molekul yang tidak stabil di unbuffered air, yang hydrolyses untuk ADP dan fosfat.. Hal ini karena kekuatan ikatan antara residu fosfat dalam ATP kurang dari kekuatan dari hidrasi ikatan antara produk-produknya (ADP + fosfat), dan air.. Jadi, jika ATP dan ADP berada dalam kesetimbangan kimia dalam air, hampir semua ATP pada akhirnya akan dikonversi ke ADP. . Sebuah sistem yang jauh dari kesetimbangan mengandung energi bebas Gibbs, dan mampu melakukan pekerjaan.. Sel hidup menjaga rasio ATP menjadi ADP pada suatu titik sepuluh lipat dari kesetimbangan, dengan konsentrasi ATP ribuan kali lipat lebih tinggi daripada konsentrasi ADP. [ 9 ] Perpindahan dari kesetimbangan berarti bahwa hidrolisis ATP dalam sel melepaskan energi dalam jumlah besar.Peran ATP yang paling banyak dikenali orang adalah sebagai pembawa energi, dalam bentuk yang tertukar sebagai ATP dan ADP. Fungsi ini berlangsung di berbagai kompartemen sel, tetapi kebanyakan terjadi pada sitosol (ruang di dalam sitoplasma yang berisi cairan kental). Sebagai pembawa energi, ATP juga banyak dijumpai pada mitokondria.ATP dan nukleosida trifosfat lainnya dapat berada di luar sel, menempati matriks ekstraselular. Di sini mereka berperan sebagai agen signaling yang merespon perubahan lingkungan atau gangguan dari organisme lain untuk kemudian ditangkap oleh reseptor pada membran sel. Mekanisme ini belum banyak dipelajari dan diketahui terjadi pada hewan dan, ternyata, juga pada tumbuhan.

2.3. Proses FotosintesisProses fotosintesis masih terus diselidiki karena masih ada sejumlah tahap yang belum bisa dijelaskan, meskipun sudah sangat banyak yang diketahui tentang proses vital ini. Proses fotosintesis sangat kompleks karena melibatkan semua cabang ilmu pengetahuan alam utama, seperti fisika, kimia, maupun biologi sendiri. Pada tumbuhan, organ utama tempat berlangsungnya fotosintesis adalah daun. Namun secara umum, semua sel yang memiliki kloroplast berpotensi untuk melangsungkan reaksi ini. Di organel inilah tempat berlangsungnya fotosintesis, tepatnya pada bagian stroma. Hasil fotosintesis (disebut fotosintat) biasanya dikirim ke jaringan-jaringan terdekat terlebih dahulu. Pada dasarnya, rangkaian reaksi fotosintesis dapat dibagi menjadi dua bagian utama: reaksi terang (karena memerlukan cahaya) dan reaksi gelap (tidak memerlukan cahaya tetapi memerlukan karbon dioksida).Reaksi terangReaksi terang adalah proses untuk menghasilkan ATP dan reduksi NADPH2. Reaksi ini memerlukan molekul air. Proses diawali dengan penangkapan foton oleh pigmen sebagai antena. Pigmen klorofil menyerap lebih banyak cahaya terlihat pada warna biru (400-450 nanometer) dan merah (650-700 nanometer) dibandingkan hijau (500-600 nanometer). Cahaya hijau ini akan dipantulkan dan ditangkap oleh mata kita sehingga menimbulkan sensasi bahwa daun berwarna hijau. Fotosintesis akan menghasilkan lebih banyak energi pada gelombang cahaya dengan panjang tertentu. Hal ini karena panjang gelombang yang pendek menyimpan lebih banyak energi. Di dalam daun, cahaya akan diserap oleh molekul klorofil untuk dikumpulkan pada pusat-pusat reaksi. Tumbuhan memiliki dua jenis pigmen yang berfungsi aktif sebagai pusat reaksi atau fotosistem yaitu fotosistem II dan fotosistem I. Fotosistem II terdiri dari molekul klorofil yang menyerap cahaya dengan panjang gelombang 680 nanometer, sedangkan fotosistem I 700 nanometer. Kedua fotosistem ini akan bekerja secara simultan dalam fotosintesis, seperti dua baterai dalam senter yang bekerja saling memperkuat.Fotosintesis dimulai ketika cahaya mengionisasi molekul klorofil pada fotosistem II, membuatnya melepaskan elektron yang akan ditransfer sepanjang rantai transpor elektron. Energi dari elektron ini digunakan untuk fotofosforilasi yang menghasilkan ATP, satuan pertukaran energi dalam sel. Reaksi ini menyebabkan fotosistem II mengalami defisit atau kekurangan elektron yang harus segera diganti. Pada tumbuhan dan alga, kekurangan elektron ini dipenuhi oleh elektron dari hasil ionisasi air yang terjadi bersamaan dengan ionisasi klorofil. Hasil ionisasi air ini adalah elektron dan oksigen. Oksigen dari proses fotosintesis hanya dihasilkan dari air, bukan dari karbon dioksida. Pendapat ini pertama kali diungkapkan oleh C.B. van Neil yang mempelajari bakteri fotosintetik pada tahun 1930-an. Bakteri fotosintetik, selain sianobakteri, menggunakan tidak menghasilkan oksigen karena menggunakan ionisasi sulfida atau hidrogen.Pada saat yang sama dengan ionisasi fotosistem II, cahaya juga mengionisasi fotosistem I, melepaskan elektron yang ditransfer sepanjang rantai transpor elektron yang akhirnya mereduksi NADP menjadi NADPH.Reaksi Gelap Reaksi gelap berlangsung di stroma. Pada reaksi gelap di diperlukan karbon dioksida (CO2). ATP dan NADPH yang dihasilkan dalam proses fotosintesis memicu terjadinya reaksi gelap (siklus calvin). Pada proses ini terjadi pengikatan karbon dioksida di dalam daun. Karbon dioksida ini akan bergabung dengan ion hidrogen yang dihasilkan dari reaksi terang, membentuk gula (glukosa).ATP dan NADPH yang dihasilkan dalam proses fotosintesis memicu berbagai proses biokimia. Pada tumbuhan proses biokimia yang terpicu adalah siklus Calvin yang mengikat karbon dioksida untuk membentuk ribulosa (dan kemudian menjadi gula seperti glukosa). Reaksi ini disebut reaksi gelap karena tidak bergantung pada ada tidaknya cahaya sehingga dapat terjadi meskipun dalam keadaan gelap (tanpa cahaya).

2.4. Fosforilasi OksidatifFosforilasi oksidatif adalah suatu lintasan metabolisme yang menggunakan energi yang dilepaskan oleh oksidasi nutrien untuk menghasilkan adenosina trifosfat (ATP). Walaupun banyak bentuk kehidupan di bumi menggunakan berbagai jenis nutrien, hampir semuanya menjalankan fosforilasi oksidatif untuk menghasilkan ATP. Lintasan ini sangat umum digunakan karena ia merupakan cara yang sangat efisien untuk melepaskan energi, dibandingkan dengan proses fermentasi alternatif lainnya seperti glikolisis anaerobik.Selama fosforilasi oksidatif, elektron ditransfer dari pendonor elektron ke penerima elektron melalui reaksi redoks. Reaksi redoks ini melepaskan energi yang digunakan untuk membentuk ATP. Pada eukariota, reaksi redoks ini dijalankan oleh serangkaian kompleks protein di dalam mitokondria, manakala pada prokariota, protein-protein ini berada di membran dalam sel. Enzim-enzim yang saling berhubungan ini disebut sebagai rantai transpor elektron. Pada eukariota, lima kompleks protein utama terlibat dalam proses ini, manakala pada prokariota, terdapat banyak enzim-enzim berbeda yang terlibat.Energi yang dilepaskan oleh perpindahan elektron melalui rantai transpor elektron ini digunakan untuk mentranspor proton melewati membran dalam mitokondria. Proses ini disebut kemiosmosis. Transpor ini menghasilkan energi potensial dalam bentuk gradien pH dan potensial listrik di seluruh permukaan membran ini. Energi yang tersimpan dalam bentuk ini dimanfaatkan dengan cara mengijinkan proton mengalir balik melewati membran melalui enzim yang disebut ATP sintase. Enzim ini menggunakan energi seperti ini untuk menghasilkan ATP dari adenosina difosfat (ADP) melalui reaksi fosforilasi. Reaksi ini didorong oleh aliran proton, yang mendorong rotasi salah satu bagian enzim.Walaupun fosforilasi oksidatif adalah bagian vital metabolisme, ia menghasilkan spesi oksigen reaktif seperti superoksida dan hidrogen peroksida. Hal ini dapat mengakibatkan pembentukan radikal bebas, merusak sel tubuh, dan kemungkinan juga menyebabkan penuaan. Enzim-enzim yang terlibat dalam lintasan metabolisme ini juga merupakan target dari banyak obat dan racun yang dapat menghambat aktivitas enzim.Karbohidrat adalah komponen dalam makanan yang merupakan sumber energi yang utama bagi organisme hidup. Dalam makanan kita, karbohidrat terdapat sebagai polisakarida yang dibuat dalam tumbuhan dengan cara fotosintesis. Tumbuhan merupakan gudang yang menyimpan karbohidrat dalam bentuk amilum dan selulosa. Amilum digunakan oleh hewan dan manusia apabila ada kebutuhan untuk memproduksi energi. Di samping dalam tumbuhan, dalam tubuh hewan dan manusia juga terdapat karbohidrat yang merupakan sumber energi, yaitu glikogen. Karbohidrat siap dikatabolisir menjadi energi jika berbentuk monosakarida. Energi yang dihasilkan berupa Adenosin trifosfat (ATP).Proses GlikolisisPada dasarnya metabolisme glukosa dapat dibagi dalam dua bagian yaitu yang tidak menggunakan oksigen atau anaerob dan yang menggunakan oksigen atau aerob. Dengan adanya oksigen (dalam suasana aerob), glikolisis berlangsung menghasilkan piruvat, atau tanpa oksigen (glikolisis anaerob) menghasilkan laktat. Glikolisis menghasilkan dua senyawa karbohidrat beratom tiga dari satu senyawa beratom enam ; pada proses ini terjadi sintesis ATP dari ADP + Pi. Reaksi anaerob terdiri atas serangkaian reaksi yang mengubah glukosa menjadi asam laktat. Proses ini disebut glikolisis. Dalam keadaan tanpa oksigen respirasi terhenti karena proses pengangkutan electron yang dirangkaikan dengan fosforilasi bersifat oksidasi melalui rantai pernafasan yang menggunakan molekul oksigen sebagai penerima electron terakhir, tidak berjalan. Akibatnya jalan metabolisme lingkar asam trikarboksilat (daur Krebs) akan terhenti pula sehingga piruvat tidak lagi masuk ke dalam daur Krebs melainkan dialihkan pemakaiannya yaitu diubah menjadi asam laktat oleh lakatat dehidrogenase dengan NADH sebagai sumber energinya. Dalam hal ini dua molekul NADH yang dihasilkan oleh reaksi tahap kelima dalam glikolisis (reaksi dengan gliseraldehida 3-fosfat dehidrogenase) tidak dipakai untuk membentuk ATP melainkan digunakan untuk reaksi reduksi dua molekul asam piruvat menjadi asam laktat. Jadi pada glikolisis anaerob ini energi yang dihasilkan hanya dua molekul ATP saja. Jumlah ini jauh lebih kecil jika dibandingkan dengan energi yang dihasilkan oleh glikolisis aerob, yaitu 8 ATP.Tiap reaksi dalam proses glikolisis ini menggunakan enzim tertentu, dan akan dibahas satu demi satu.1. HeksokinaseTahap pertama proses glikolisis adalah pengubahan glukosa menjadi glukosa -6- fosfat dengan reaksi fosforilasi. Enzim heksokinase merupakan katalis dalam reaksi tersebut dibantu oleh ion Mg+ sebagai kofaktor. Enzim ini ditemukan oleh Meyerhof pada tahun 1927 dan telah dikristalkan dari ragi, mempunyai berat molekul 111.000. Heksokinase yang berasal dari ragi dapat merupakan katalis pada reaksi pemindahan gugus fosfat dari ATP tidak hanya kepada glukosa tetapi juga kepada fruktosa, manosa, dan glukosamina. Dalam otak, otot dan hati terdapat enzim heksokinase yang multi substrat ini. Disamping itu adapula enzim-enzim yang khas tetapi juga kepada fruktosa, manosa, dan glukosamina. Dalam kinase hati juga memproduksi fruktokinase yang menghasilkan fruktosa -1- fosfat.Enzim heksokinase dari hati dapat dihambat oleh hasil reaksi sendiri. Jadi apabila glukosa -6- fosfat terbentuk dalam jumlah banyak, maka senyawa ini akan menjadi inhibitor bagi enzim heksokinase tadi. Selanjutnya enzim akan aktif kembali apabila konsentrasi glukosa -6- fosfat menurun pada tingkat tertentu.2. FosafoheksoisomeraseReaksi berikutnya ialah isomerisasi, yaitu pengubahan glukosa -6- fosfat menjadi fruktosa -6- fosfat, dengan enzim fosfoglukoisomerase. Enzim ini tidak memerlukan kofaktor dan telah diperoleh dari ragi dengan cara kristalisasi. Enzim fosfoheksoisomerase terdapat pada jaringan otot dan mempunyai berat molekul 130.000.3. FosfofruktokinaseFruktosa -6- fosfat diubah menjadi fruktosa -1,6- difosfat oleh enzim fosfofruktokinase dibantu oleh ion Mg+ sebagai kofaktor. Dalam reaksi ini gugus fosfat dipindahkan dari ATP kepada fruktosa -6- fosfat dan ATP sendiri akan berubah menjadi ADP. Fosfofruktokinase dapat dihambat atau dirangsang oleh beberapa metabolit, yaitu senyawa yang terlibat dalam proses metabolisme ini. Sebagai contoh, ATP yang berlebih dan asam sitrat dapat menghambat, dilain pihak adanya AMP, ADP, dan fruktosa-6- fosfat dapat menjadi efektor positif yang merangsang enzim fosfofruktokinase. Enzim ini adalah suatu enzim alosterik dan mempunyai berat molekul kira-kira 360.000.4. AldolaseReaksi tahap keempat dalam rangkaian glikolisis adalah penguraian molekul fruktosa -1,6- difosfat membentuk dua molekul triosa fosfat, yaitu dihidroksi acetone fosfat dan D-gliseraldehida-3-fosfat. Dalam tahap ini enzim aldolase yang menjadi katalis, telah ditemukan dan dimurnikan oleh Warburg. Enzim ini terdapat dalam jaringan tertentu dan dapat bekerja sebagai katalis dalam reaksi penguraian beberapa ketosa dan monofosfat, misalnya fruktosa -1,6- difosfat, segoheptulosa -1,7- difosfat, fruktosa -1- fosfat, Eritrulosa -1- fosfat. Hasil reaksi penguraian tiap senyawa tersebut yang sama adalah dihidroksi acetone fosfat.5. Triosafosfat IsomeraseDalam reaksi penguraian oleh enzim aldolase terbentuk dua macam senyawa, yaitu D-gliseraldehida-3-fosfat dan dihidroksi aseton fosfat. Yang mengalami reaksi lebih lanjut dam proses glikolisis ialah D-gliseraldehid-3-fosfat. Andaikata sel tidak mampu mengubah dihidroksi aseton fosfat menjadi D-gliseraldehida-3-fosfat, tentulah dihidroksi aseton fosfat akan tertimbun dalam sel. Hal ini tidak berlangsung karena dalam sel terdapat enzim triosafosfat isomerase yang dapat mengubah dihidroksi aseton fosfat menjadi D-gliseraldehida-3-fosfat. Adanya keseimbangan antara kedua senyawa tersebut dikemukakan oleh Meyerhof dan dalam keadaan keseimbangan dihidroksi aseton fosfat terdapat dalam jumlah dari 90%. Enzim ini bekerja sebagai katalis pada reaksi oksidasi gliseraldehida -3-fosfat menjadi asam 1,3 difosfogliserat. Dalam reaksi ini digunakan koenzim NAD+, sedangkan gugus fosfat diperoleh dari asam fosfat. Reaksi oksidasi ini mengubah aldehida menjadi asam karboksilat. Gliseraldehida-3-fosfat dehidrogenase telah dapat diperoleh dalam bentuk kristal dari ragi dan mempunyai berat molekul 145.000. Enzim ini adalah suatu tetramer yang terdiri atas empat subunit yang masing-masing mengikat satu molekul NAD+, jadi pada tiap molekul enzim terikat empat molekul NAD+.6. Fosfogliseril KinaseReaksi yang menggunakan enzim ini ialah reaksi pengubahan asam 1,3-difosfogliserat menjadi asam 3-fosfogliserat. Dalam reaksi ini terbentuk satu molekul ATP dari ADP dan ion Mg++ diperlukan sebagai kofaktor. Oleh karena ATP adalah senyawa fosfat berenergi tinggi, maka reaksi ini mempunyai fungsi untuk menyimpan energi yang dihasilkan oleh proses glikolisis dalam bentuk ATP.7. Fosfogliseril MutaseFosfogliseril mutase bekerja sebagai katalis pada reaksi pengubahan asam 3-fosfogliserat menjadi asam 2-fosfogliserat. Enzim ini berfungsi memindahkan gugus fosfat dari satu atom C kepada atom C lain dalam satu molekul. Berat molekul enzim fosfogliseril mutase yang diperoleh dari ragi ialah 112.000.8. EnolaseReaksi berikutnya ialah reaksi pembentukan asam fosfoenol piruvat dari asam 2-fosfogliserat dengan katalis enzim enolase dan ion Mg++ sebagai kofaktor. Reaksi pembentukan asam fosfoenol piruvat ini ialah reaksi dehidrasi. Adanya ion F- dapat menghambat kerjanya enzim enolase, sebab ion F- dengan ion Mg++ dan fosfat dapat membentuk kompleks magnesium fluoro fosfat. Dengan terbentuknya kompleks ini akan mengurangi jumlah ion Mg++ dalam campuran reaksi dan akibat berkurangnya ion Mg++ maka efektivitas reaksi berkurang.9. Piruvat KinaseEnzim ini merupakan katalis pada reaksi pemindahan gugus fosfat dari asam fosfoenolpiruvat kepada ADP sehingga terbentuk molekul ATP dan molekul asam piruvat. Piruvat kinase telah dapat diperoleh dari ragi dalam bentuk kristal. Enzim ini adalah suatu tetramerdengan berat molekul 165.000. Dalam reaksi tersebut diatas, diperlukan ion Mg++ dan K+ sebagai activator.10. Laktat DehidrogenaseReaksi yang menggunakan enzim laktat dehidrogenase ini ialah reaksi tahap akhir glikolisis, yaitu pembentukan asam laktat dengan cara reduksi asam piruvat. Dalam reaksi ini digunakan NADH sebagai koenzim.Tinjauan Energi Proses Glikolisis Proses glikolisis dimulai dengan molekul glukosa dan diakhiri dengan terbentuknya asam laktat. Serangkaian reaksi-reaksi dalam proses glikolisis tersebut dinamakan juga jalur Embden-Meyerhof.Reaksi-reaksi yang berlangsung pada proses glikolisis dapat dibagi dalam dua fase. Pada fase pertama, glukosa diubah menjadi triosafosfat dengan proses fosforilasi. Fase kedua dimulai dari reaksi oksidasi triosafosfat hingga terbentuk asam laktat. Perbedaan antara kedua fase ini terletak pada aspek energi yang berkaitan dengan reaksi-reaksi dalam kedua fase tersebut.Dalam proses glikolisis satu mol glukosa diubah menjadi dua mol asam laktat. Fase pertama dalam proses glikolisis melibatkan dua mol ATP yang diubah menjadi ADP. Jadi fase pertama ini menggunakan energi yang tersimpan dalam molekul ATP. Fase kedua mengubah dua mol triosa yang terbentuk pada fase pertama menjadi dua mol asam laktat, dan dapat menghasilkan 4 mol ATP. Jadi fase kedua ini menghasilkan energi. Apabila ditinjau secara keseluruhan proses glikolisis ini menggunakan 2 mol ATP dan menghasilkan 4 mol ATP sehingga masih ada sisa 2 mol ATP yang ekuivalen dengan energi sebesar 14.000 kalori. Energi tersebut tersimpan dan dapat digunakan oleh otot dalam energi mekanik. Oleh karena energi yang dibebaskan untuk reaksi glukosa menjadi asam laktat adalah 56.000 kalori, maka dapat dihitung bahwa efisiensi proses glikolisis ialah 14.000/56.000 x 100% = 25%. Suatu tingkat efisiensi yang cukup tinggi.Proses glikolisis tidak hanya melibatkan glukosa saja, tetapi juga monosakarida lain, misalnya fruktosa, galaktosa dan manosa. Monosakarida tersebut diserap melalui dinding usus dibawa ke hati. Di sini beberapa monosakarida dan juga glikogen mengalami beberapa reaksi pengubahan menjadi glukosa -6-fosfat dan selanjutnya masuk ke dalam proses glikolisis, seperti halnya dengan glukosa. Enzim galaktokinase merupakan katalis pada reaksi pembentukan galaktosa-1-fosfat dari galaktosa. Kemudian galaktosa-1-fosfat diubah menjadi uridin difosfat galaktosa (UDP-galaktosa) oleh enzim UDP galaktosapirofosforilase yang terdapat dalam hati orang dewasa. Selanjutnya UDP galaktosa diubah menjadi UDP glukosa oleh enzim UDP glukosa epimerase. Akhirnya UDP glukosa bereaksi dengan pirofosfat dan membentuk UTP dan glukosa-1-fosfat. Reaksi ini berlangsung dengan adanya enzim UDP glikosapirofosforilasesebagai katalis. Pada hati bayi atau anak-anak, terdapat enzim fosfogalaktosa uridiltransferase. Enzim ini dapat mengubah galaktosa-1-fosfat menjadi glukosa-1-fosfat.Di samping monosakarida, gliserol juga ikut serta dalam proses glikolisis. Gliserol sebagai hasil hidrolisis lemak dapat diubah menjadi gliserol-3-fosfat oleh enzim gliserolkinase. Gliserol-3-fosfat yang terbentuk kemudian diubah menjadi dihidroksiasetonfosfat oleh enzim gliserilfosfatdehidrogenase. Dihidroksiaseton fosfat terdapat dalam keadaan keseimbangan dengan gliseraldehida-3-fosfatyang merupakan salah satu hasil antara dalam proses glikolisis.Perubahan piruvat menjadi asetilkoenzim-AReaksi oksidasi piruvat hasil glikolisis menjadi asetilkoenzim-A, merupakan tahap reaksi penghubung yang penting antara glikolisis dengan jalur metabolisme lingkar asam trikarboksilat (daur Krebs). Reaksi yang dikatalisis oleh kompleks piruvat dihidrogenase dalam matriks mitokondrion menghasilkan tiga macam enzim (piruvat dehidrogenase, dihidrolipoil transasetilase, dan dihidrolipoil dehidrogenase), lima macam koenzim (tiamin pirofosfat, asam lipoat, koenzim-A, flavin adenine dinukleotida, dan nikotinamid adenine dinukleotida), dan berlangsung dalam lima tahap reaksi. Keseluruhan reaksi dekarboksilasi ini irreversible, dengan G = -8,0 kkal per mol.Piruvat + NAD+ + koenzim-A + NADH + CO2Reaksi ini merupakan jalan masuk utama karbohidrat kedalam daur Krebs. Tahap reaksi pertama dikatalisis oleh piruvat dehidrogenase yang menggunakan tiamin pirofosfat sebagai koenzimnya. Dekarboksilasi piruvat menghasilkan senyawa -hidroksietil didehidrogenase menjadi asetil yang kemudian dipindahkan dari tiamin pirofosfat ke atom S dari koenzim yang berikutnya, yaitu asam lipoat, yang terikat pada enzim dihidrolipoil transasetilase. Dalam hal ini gugus disulfide dari asam lipoat diubah menjadi bentuk reduksinya, gugus sulfhidril. Pada tahap reaksi ketiga, gugus asetil dipindahkan dengan perantara enzim dari gugus lipoil pada asam dihidrolipoat, ke gugus tiol (sulfhidril pada koenzim-A). Kemudian asetilkoenzim-A dibebaskan dari system enzim kompleks piruvat dehidrogenase. Pada tahap reaksi keempat, gugus ditiol pada gugus lipoil yang terikat pada dihidrolipoil transasetilase dioksidasi kembali menjadi bentuk disulfidanya dengan enzim dihidrolipoil dehidrogenase yang berikatan dengan FAD (flafin adenine dinulkeotida). Akhirnya (tahap reaksi kelima) FADH2 (bentuk reduksi dari FAD) yang tetap terikat pada enzim, dioksidasi kembali oleh NAD+ (nikotinamid adenine dinukleotida) menjadi FAD, sedangkan NAD+ berubah menjadi NADH (bentuk reduksi dari NAD+).Pengaturan dekarboksilasi piruvat Telah diketahui bahwa disamping mengandung tiga macam enzim tersebut diatas, kompleks enzim piruvat dehidrogenase juga mempunyai dua macam enzim yang terdapat dalam sub unit pengaturnya yaitu , piruvat dehidrogenase kinase dan piruvat dehidrogenase fosfatase. Kedua enzim ini berperan dalam mengatur laju reaksi dekarboksilasi piruvat dengan cara mengendalikan kegiatan sub unit katalitiknya pada kompleks enzim piruvat dehidrogenase itu sendiri. Bila jumlah ATP yang dihasilkan oleh daur Krebs dan fosforilasi bersifat oksidasi terlalu banyak, keseimbangan reaksi berjalan ke bawah (laju reaksi fosforilasi sub unit katalitik kompleks piruvat dehidrogenase bertambah besar) sehingga kegiatan kompleks piruvat dehidrogenase terhambat dan menjadi tidak aktif. Hal ini menyebabakan terhentinya reaksi pembentukan asetilkoenzim-A dari piruvat. Akibatnya, jumlah asetil koenzim-A yang diperlukan untuk daur Krebs akan berkurang sehingga laju reaksi daur Krebs terhsambat dan produksi ATP terhenti. Sebaliknya, bila jumlah ADP banyak (ATP sedikit) keseimbangan reaksi didorong keatas (laju reaksi defosforilasi kompleks piruvat dehidrogenase bertambah besar) sehingga kegiatan kompleks piruvat dehidrogenase bertambah. Akibatnya reaksi dekarboksilasi piruvat menjadi koenzim-A naik, sehingga laju reaksi daur Krebs bertambah besar dan produksi ATP bertambah banyak.Jalur metabolisme piruvatPiruvat dapat mengalami berbagai jalur reaksi yang berbeda sehingga merupakan titik cabang metabolisme karbohidrat. Sebagian dari jalur tersebut berlangsung dengan beberapa tahap reaksi. Penambahan gugus amino akan mendorong pembentukan alanina dari piruvat. Sebaliknya, reaksi perubahan alanina menjadi piruvat merupakan salah satu jalan masuknya asam amino kedalam jalur metabolisme karbohidrat. Adanya CO2 yang berlebih mendorong terjadinya oksalasetat dari piruvat. Reaksi bolak-balik piruvat-laktat, seperti telah dibahas sebelumnya, merupakan jalur titik akhir sitesis laktat. Metabolisme laktat berlangsung dengan terlebih dulu mengubahnya kembali menjadi piruvat. Dalam keadaan normal, bila jumlah persediaan oksigen dalam jaringan otot cukup banyak, piruvat tidak diubah menjadi laktat melainkan didekarboksilasi menjadi asetilkoenzim-A. Melalui jalur metabolisme glukoneogenesis, piruvat dapat diubah menjadi glukosa atau glikogen.Proses dekarboksilasi piruvat dapat berlangsung dengan dua cara, bergantung pada jasadnya. Di dalam sel ragi, piruvat didekarboksilasi dengan mekanisme yang sederhana, menjadi asetaldehida yang kemudian diubah menjadi etanol. Reaksi ini merupakan dasar fermentasi alcohol. Cara dekarboksilasi lainnya adalah perubahan piruvat menjadi asetilkoenzim-A melalui beberapa tahap reaksi enzim yang lebih kompleks.

BAB IIIPENUTUP

3.1. KesimpulanMetabolisme merupakan rangkaian reaksi kimia yang diawali oleh substrat awal dan diakhiri dengan produk akhir, yang terjadi dalam sel. Perlu Anda ketahui reaksi tersebut meliputi reaksi penyusunan energi (anabolisme) dan reaksi penggunaan energi (katabolisme). Proses metabolisme yang terjadi di dalam sel makhluk hidup seperti pada tumbuhan dan manusia, melibatkan sebagian besar enzim (katalisator) baik berlangsung secara sintesis (anabolisme) dan respirasi (katabolisme).Adenosina trifosfat (ATP) adalah suatu nukleotida yang dalam biokimia dikenal sebagai "satuan molekular" pertukaran energi intraselular; artinya, ATP dapat digunakan untuk menyimpan dan mentranspor energi kimia dalam sel. ATP juga berperan penting dalam sintesis asam nukleat. Molekul ATP juga digunakan untuk menyimpan energi yang dihasilkan tumbuhan dalam respirasi selular. ATP yang berada di luar sitoplasma atau di luar sel dapat berfungsi sebagai agen signaling yang memengaruhi pertumbuhan dan respon terhadap perubahan lingkungan.Fosforilasi oksidatif adalah suatu lintasan metabolisme yang menggunakan energi yang dilepaskan oleh oksidasi nutrien untuk menghasilkan adenosina trifosfat (ATP). Walaupun banyak bentuk kehidupan di bumi menggunakan berbagai jenis nutrien, hampir semuanya menjalankan fosforilasi oksidatif untuk menghasilkan ATP. Selama fosforilasi oksidatif, elektron ditransfer dari pendonor elektron ke penerima elektron melalui reaksi redoks. Reaksi redoks ini melepaskan energi yang digunakan untuk membentuk ATP.Walaupun fosforilasi oksidatif adalah bagian vital metabolisme, ia menghasilkan spesi oksigen reaktif seperti superoksida dan hidrogen peroksida. Hal ini dapat mengakibatkan pembentukan radikal bebas, merusak sel tubuh, dan kemungkinan juga menyebabkan penuaan. Enzim-enzim yang terlibat dalam lintasan metabolisme ini juga merupakan target dari banyak obat dan racun yang dapat menghambat aktivitas enzim.

DAFTAR PUSTAKA

http://texbuk.blogspot.com/2012/01/proses-metabolisme-pada-tumbuhan.htmlhttp://id.wikipedia.org/wiki/Adenosina_trifosfathttp://berthae.wordpress.com/2010/06/03/pengertian-dari-atp/http://irwantoshut.net/fotosintesis.htmlhttp://hendrapagala.wordpress.com/2010/01/21/bioenergi-sel-dan-fosforilasi-oksidatif-perolehan-atp-dari-karbohidrat-glikolisis-dan-oksidasi-piruvat/