Home >Documents >Makalah Alloy Stell

Makalah Alloy Stell

Date post:09-Feb-2016
Category:
View:149 times
Download:6 times
Share this document with a friend
Transcript:

MAKALAHBAJA PADUAN (ALLOY STELL)TugasDisusun oleh :Arbain (12.62.0022)

UNIVERSITA ISLAM KALIMANTAN (UNISKA)MUHAMMAD ARSYAD AL-BANJARIBANJARMASINKata PengantarDengan mengucapkan puji syukur Alhamdulillah kepada Allah SWT, yang telah melimpahkan segala rahmat dan hidayah-Nya, sehingga kami dapat mengerjakan makalah Baja Paduan (Alloy Stell) ini dengan baik dan lancar. Kami berharap makalah ini dapat memberikan motivasi kepada para mahasiswa-mahasiswi UNISKABanjarmasin untuk lebih giat mempelajari dengan dalam hakekat yang terkandung dalam.Kami juga meminta maaf yang sebesar-besarnya apabila ada kekurangan, kesalahan bahkan kata-kata yang tidak berkenan di hati dan disisi lain kami sangat mengharapkan ada masukan baik kritik maupun saran dari saudara. Sehingga penyusun dapat memperbaiki apa yang jadi kekurangan kami karena tidak ada manusia yang sempurna kecuali Allah SWT.Akhir kata kami mengharapkan makalah ini banyak manfaatnya bagi kami sendiri khususnya maupun semua pihak pada umumnya.

Penyusun

DAFTAR ISI

ContentsKata PengantariDAFTAR ISIiiBAB I1PENDAHULUAN1Latar Belakang1Tujuan1BAB II2PEMBAHASAN2Pengertian2Kandungan Atom Atau Unsur Kimia2Bentuk Struktur Mikro3Cara Pembuatan4Klasifikasi Baja Paduan8Sifat-sifat Teknis Bahan12Contoh Penggunaan/Aplikasi di Bidang Teknik Pertanian/Teknik Mesin15Standarisasi Dan Pengkodean17Bentuk,Ukuran,dan Harga Yang Ada Di Pasar19BAB III20PENUTUP20Kesimpulan20Daftar Pustaka20

BAB IPENDAHULUANLatar Belakang

Tujuan

BAB IIPEMBAHASANPengertianBaja dikatakan padu jika kompesisi unsur-unsur paduannya secara khusus, bukan baja karbon biasa yang terdiri dari unsur silisium dan mangan. Baja paduan semakin banyak digunakan.Unsur yang paling banyak digunakan untuk baja paduan, yaitu: Cr,Mn, Si, Ni, W, Mo, Ti, Al, Cu, Nb dan Zr.Penambahan unsur-unsur lain dalam baja karbon dapat dilakukan dengan satu atau lebih unsur, tergantung dari karakteristik atau sifat khusus yang dikehendaki. Baja ini memiliki lebih kekuatan, kekerasan, kekerasan panas, memakai perlawanan, kemampukerasan, atau ketangguhan dibandingkan dengan baja karbon. However, they may require heat treatment to achieve such properties.

Kandungan Atom Atau Unsur KimiaUnsur paduan ditambahkan untuk mencapai sifat tertentu dalam materi. Sebagai pedoman, unsur paduan ditambahkan dalam persentase lebih rendah (kurang dari 5%) untuk meningkatkan kekuatan atau kekerasan, atau dalam persentase yang lebih besar (lebih dari 5%) untuk mencapai sifat-sifat khusus, seperti ketahanan korosi atau suhu ekstrim stabilitas. Mangan(Mg), silicon(Si), atau aluminium(Al) ditambahkan selama pembuatan baja proses untuk menghilangkan oksigen terlarut dari lelehan. Mangan, silikon, nikel, dan tembaga ditambahkan untuk meningkatkan kekuatan dengan membentuk larutan padat di ferit. Kromium, vanadium, molibdenum, dan tungsten meningkatkan kekuatan dengan membentuk fase kedua-karbida. Nikel dan tembaga meningkatkan ketahanan korosi dalam jumlah kecil. Molibdenum membantu untuk melawan embrittlement. Zirconium, cerium, dan kalsium meningkatkan ketangguhan dengan mengendalikan bentuk inklusi. Mangan sulfida, timbal, bismut, selenium, dan telurium-mesin meningkat. Elemen paduan cenderung yang baik untuk membentuk senyawa atau karbida. Nikel sangat larut dalam ferit, sehingga membentuk senyawa, biasanya Ni 3 Al. Aluminium larut dalam ferit dan membentuk senyawa Al 2 O 3 dan AlN. Silikon juga sangat larut dan biasanya membentuk senyawa SiO 2 M x O y. Mangan kebanyakan larut dalam membentuk senyawa ferit Mns, MnO SiO 2, tetapi juga akan membentuk karbida dalam bentuk (Fe, Mn) 3 C. Bentuk kromium partisi antara fasa ferit dan karbida di baja, membentuk (Fe, Cr 3) C, Cr 7 C 3, dan Cr 23 C 6. Jenis bentuk kromium karbida yang tergantung pada jumlah karbon dan jenis-jenis elemen paduan hadir. Tungsten dan molibdenum membentuk karbida jika ada karbon yang cukup dan tidak adanya unsur-unsur pembentuk karbida kuat (yaitu titanium & niobium), mereka membentuk karbida Mo 2 C dan W 2 C, masing-masing. Vanadium, titanium, dan niobium karbida unsur-unsur kuat yang membentuk karbida V 3 C 3, TiC, dan NIC satu demi satu.Unsur paduan juga memiliki mempengaruhi pada suhu eutektoid baja. Mangan dan nikel eutektoid menurunkan suhu dan dikenal sebagai unsur menstabilkan austenit. Cukup dengan elemen-elemen ini pada struktur austenitik dapat diperoleh pada suhu kamar. Elemen pembentukan karbida eutektoid menaikkan suhu; elemen ini dikenal sebagai unsur menstabilkan ferit.

Bentuk Struktur MikroBaja secara umum memiliki struktur mikro berupa ferit, dan pearlite. Ada beberapa perbedaan struktur mikro yang disebabkan oleh konsentrasi karbon pasa masing masing campuran, Fasa-fasa padat yang ada didalam baja : Ferit (alpha) : merupakan sel satuan (susunan atom-atom yang paling kecil dan teratur) berupa Body Centered Cubic (BCC= kubus pusat badan), Ferit ini mempunyai sifat magnetis, agak ulet, dan agak kuat. Autenit : merupakan sel satuan yang berupa Face Centered Cubic (FCC = kubus pusat muka), Austenit ini mempunyai sifat Non magnetis, dan ulet. Sementid (besi karbida) : merupakan sel satuan yang berupa orthorombik, Sementid ini mempunyai sifat keras dan getas. Perlit : merupakan campuran fasa ferit dan sementid sehingga mempunyai sifat kuat. Delta : merupakan sel satuan yang berupa Body Centered Cubic (BCC=kubus pusat badan)

High Speed Steel (HSS) merupakan salah satu bagian dari Tool steel dengan kararakteristik mampu mempertahankan nilai kekerasan pada suhu 300~700 derajat celcius. Selain itu material HSS juga memeliki kadar karbon yang relative lebih tinggi dibandingkan material tool steel lainnya yaitu berkisar 1.5~2.0% C. Unsur-unsur paduan utama yang terdapat dalam material HSS yang akan membentuk karbida yaitu Tungsten, Molybdenum, Vanadium. Chromium. Unsur Nickel dan Manganese tidak terlalu banyak digunakan yaitu berkisar 0.2~0.5%. Penambahan Cobalt, Boron, Niobium merupakan salah satu alternatif untuk meningkatkan kinerja material HSS. Material HSS bisa di hasilkan melalui proses pengecoran atau proses metalurgi serbuk. Berikut ini saya tampilkan beberapa struktur mikro material HSS hasil proses pengecoran dengan menggunakan etsa Murakami dengan perbesaran 500X, mikroskop Olympus GX51 Inverted Type

Cara Pembuatan

1. Proses dalam Dapur Tinggi Prinsip dari proses dapur tinggi adalah prinsip reduksi. Pada proses ini zat karbon monoksida dapat menyerap zat asam dari ikatan-ikatan besi zat asam pada suhu tinggi. Pada pembakaran suhu tinggi + 18000 C dengan udara panas,maka dihasilkan suhu yang dapat menyelenggarakan reduksi tersebut. Agar tidak terjadi pembuntuan karena proses berlangsung maka diberi batu kapur sebagai bahan tambahan. Bahan tambahan bersifat asam apabila bijih besinya mempunyai sifat basa dan sebaliknya bahan tambahan diberikan yang bersifat basa apabila bijih besi bersifat asam. Gas yang terbentuk dalam dapur tinggi selanjutnya dialirkan keluar melalui bagian atas dan ke dalam pemanas udara. Terak yang menetes ke bawah melindungi besi kasar dari oksida oleh udara panas yang dimasukkan, terak ini kemudian dipisahkan. Proses reduksi di dalam dapur tinggi tersebut berlangsung sebagai berikut: Zat arang dari kokas terbakar menurut reaksi :

C+O2 CO2

sebagian dari CO2 bersama dengan zat arang membentuk zat yang berada ditempat yang lebih atas yaitu gas CO.

CO + C 2CO Di bagian atas dapur tinggi pada suhu 300 sampai 800 C oksid besi yang lebih tinggi diubah menjadi oksid yang lebih rendah oleh reduksi tidak langsung dengan CO tersebut menurut prinsip :

Fe O + CO 2FeO+CO

Pada waktu proses berlangsung muatan turun ke bawah dan terjadi reduksi tidak langsung menurut prinsip :

FeO+CO FeO+CO2

Reduksi ini disebut tidak langsung karena bukan zat arang murni yang mereduksi melainkan persenyawaan zat arang dengan oksigen. sEdangkan reduksi langsung terjadi pada bagian yang terpanas dari dapur, yaitu langsung di atas pipa pengembus. Reduksi ini berlangsung sebagai berikut.

FeO+C Fe+CO

CO yang terbentuk itulah yang naik ke atas untuk mengadakan reduksi tidak langsung tadi. Setiap 4 sampai 6 jam dapur tinggi dicerat, pertama dikeluarkan teraknya dan baru kemudian besi. Besi yang keluar dari dapur tinggi disebut besi kasar atau besi mentah yang digunakan untuk membuat baja pada dapur pengolahan baja atau dituang menjadi balok-balok tuangan yang dikirimkan pada pabrik-pabrik pembuatan baja sebagai bahan baku. Besi cair dicerat dan dituang menjadi besi kasar dalam bentuk balok-balok besi kasar yang digunakan sebagai bahan ancuran untuk pembuatan besi tuang (di dalam dapur kubah) atau masih dalam keadaan cair dipindahkan pada bagian pembuatan baja (dapur Siemen Martin). Terak yang keluar dari dapur tinggi dapat pula dimanfaatkan menjadi bahanpembuatan pasir terak atau wol terak sebagai bahan isolasi atau sebagai bahan campuran semen. Besi cair yang dihasilkan dari proses dapur tinggi sebelum dituang menjadi balok besin kasar sebagai bahan ancuran di pabrik penuangan, perlu dicampur dahulu di dalam bak pencampur agar kualitas dan susunannya seragam. Dalam bak pencampur dikumpulkan besi kasar cair dari bermacam-macam dapur tinggi yang ada untuk mendapatkan besi kasar cair yang sama dan merata. Untuk menghasilkan besi kasar yang sedikit mengandung belerang di dalam bak pencampur tersebut dipanaskan lagi menggunakan gas d

Click here to load reader

Embed Size (px)
Recommended