Home >Documents >B A N G U N R U A N G

B A N G U N R U A N G

Date post:05-Jan-2016
Category:
View:66 times
Download:8 times
Share this document with a friend
Description:
B A N G U N R U A N G. K U B U S B A L O K T A B U N G. H. G. E. F. D. C. A. B. K U B U S. H. G. E. F. D. C. B. A. B A L O K. T A B U N G. H. G. E. F. D. C. A. B. VOLUM KUBUS. Setiap kubus mempunyai sisi sama panjang  panjang = lebar = tinggi, - PowerPoint PPT Presentation
Transcript:
  • B A N G U N R U A N G K U B U S B A L O K T A B U N G

  • K U B U S

  • B A L O K

  • T A B U N G

  • VOLUM KUBUSSetiap kubus mempunyai sisi sama panjang panjang = lebar = tinggi, maka volum kubus:Volum = sisi x sisi x sisi = S x S x S = S3 Jadi, V = S3

  • LUAS KUBUSSetiap kubus terdiri dari 6 buah sisi yang bentuknya persegi yang luas setiap sisinya sama. Luas = 6 x S x S = 6 S2 Jadi, L = 6 S2

  • VOLUM BALOKSetiap balok: sisi panjang (p), lebar (l) dan tinggi (t).

    Volum = p x l x t = plt

    Jadi, V = plt

  • LUAS BALOKL1 = 2 x p x lL2 = 2 x p x tL3 = 2 x l x t

  • LUAS BALOKLuas sisi balok :Luas = L1 + L2 + L3 = 2pl + 2pt + 2lt = 2 (pl + pt + lt)

  • VOLUM TABUNGSebuah tabung mempunyai alas berbentuk lingkaran.Volum tabung sama dengan alas x tinggiV = L. alas x tinggi = r2 x tJadi, V = r2t

  • LUAS TABUNG Sisi tabung terdiri dari: - alas dan tutup berbentuk lingkaran - selimutnya berbentuk persegi panjang

  • LUAS TABUNG Luas sisi = 2 x L. alas + L. selimut = 2r2 + 2rt = 2r ( r + t )Jadi, luas sisi tabung = 2r ( r + t )

  • Contoh Soal 1 Hitunglah volum dan luas sisi kubus yang panjang rusuknya sebagai berikut :a. 6 cmb. 10 cmc. 15 cmd. 20 cm.

  • Pembahasana. S = 6 cm. V = S3 = 6 x 6 x 6 = 216 cm3 L = 6 S2 = 6 x 6 x 6 = 216 cm2

  • Pembahasanb. S = 10 cm. V = S3 = 10 x 10 x 10 = 1.000 cm3 L = 6 S2 = 6 x 10 x 10 = 600 cm2

  • Pembahasanc. S = 15 cm. V = S3 = 15 x 15 x 15 = 3.375 cm3 L = 6 S2 = 6 x 15 x 15 = 1.350 cm2

  • Pembahasand. S = 6 cm. V = S3 = 20 x 20 x 20 = 8.000 cm3 L = 6 S2 = 6 x 20 x 20 = 2.400 cm2

  • Contoh Soal 2Hitunglah volum dan luas sisi balok yang panjang rusuknya sebagai berikut :a. p = 12 cm, l = 8 cm, t = 6 cmb. p = 15 cm, l = 12 cm, t = 8 cm

  • Pembahasana. p = 12 cm, l = 8 cm, t = 6 cm V = p . l . t = 12 x 8 x 6 = 576 cm3 L = 2 (pl + pt + lt) = 2 (12 x 8 + 12 x 6 + 8 x 6) = 2 (96 + 72 + 48) = 2 x (216) = 432 cm2

  • Pembahasanb. p = 15 cm. l = 12 cm, t = 8 cm V = p . l . t = 15 x 12 x 8 = 1.440 cm3 L = 2 (pl + pt + lt) = 2 (15 x 12 + 15 x 8 + 12 x 8) = 2 (180 + 120 + 96) = 2 x (396) = 792 cm2

  • Contoh Soal 3Sebuah kaleng berbentuk prisma tegak berisi minyak tanah 27 liter, bila luas alas kaleng 450 cm2. Hitunglah tinggi kaleng minyak tanah !

  • PembahasanDiketahui : Volum = 27 liter = 27.000 cm3 Luas alas = 450 cm2Tinggi = Volum : Luas alas = 27.000 cm3 : 450 cm2 = 60 cmJadi, tinggi tabung adalah 60 cm.

  • SOAL - 1Hitunglah volum prisma tegak yang tingginya 20 cm dan alasnya berbentuk persegi yang panjang sisinya 7 cm!

  • Pembahasan Diketahui : sisi alas = 7 cm tinggi = 20 cmVolum = Luas alas x tinggi = (7 cm x 7 cm) x 20 cm = 980 cm3

    Jadi, volum prisma adalah 980 cm3.

  • SOAL - 2Hitunglah volum prisma tegak segitiga siku-siku dengan panjang sisinya 5 cm, 12 cm dan 13 cm serta tinggi prisma 10 cm!

  • Pembahasan Diketahui : Sisi alas = 5 cm, 12 cm dan 13 cm Tinggi = 10 cm Volum = Luas alas x tinggi prisma = ( at) x t = ( x 12 x 5) x 10 = 300 cm3 Jadi, volum prisma adalah 300 cm3.

  • SOAL - 3Bagian dalam sebuah pipa paralon yang berjari-jari 21 cm dan panjangnya 6 m berisi air penuh. Hitunglah volum air dalam pipa tersebut !

  • Pembahasan Diketahui : Jari-jari alas = 21 cm. Tinggi/panjang = 6 meter = 600 cmVolum = Luas alas x tinggi = ( r2 ) x t = (22/7 x 21 x 21 ) x 600 = 831.600 cm3 Jadi, volum prisma adalah 831.600 cm3

  • SOAL - 4Alas sebuah prisma berbentuk segitiga siku-siku dengan panjang sisi siku-siku 12 cm dan 16 cm. Jika tinggi prisma 25 cm, hitunglah:a. Panjang sisi miring pada alas.b. Luas prisma.

  • Pembahasan Diketahui : Sisi alas = 12 cm dan 16 cm Tinggi = 25 cm

    Sisi miring: (x) = 122 + 162 = 144 + 256= 400= 20 cm.

  • Bagian dari prisma jika dibuka

  • Pembahasan Diketahui : Sisi alas = 12 cm, 16 cm dan 20 cmTinggi = 25 cmLuas prisma:Luas sisi = t (a + b + c) = 25 (12 + 16 + 20) = 25 (48) = 1.200 cm2

  • SOAL - 5Luas selimut suatu tabung 528 cm2. Jika tinggi tabung 12 cm dan = 22/7 , hitunglah panjang jari-jari alasnya.

  • Pembahasan Diketahui : Luas selimut = 528 cm2 Tinggi tabung = 12 cm

    Lsl = 2rt 528 = 2.22/7.r .12 3696 = 528r r = 3696 : 528 r = 7 cm

  • SOAL - 6Volum suatu tabung 4.312 cm3. Jika tinggi tabung 14 cm, hitung-lah luas sisi tabung tersebut!

  • Pembahasan Diketahui : Volume tabung = 4.312 cm3 Jari-jari tabung = 14 cm

    tinggi = Volume : luas alas = 4.312 : 22/7 x 14 x 14 = 4.312 : 616 = 7 cm

  • Pembahasan Diketahui : Jari-jari tabung = 14 cm Tinggi tabung = 7 cm

    L. selimut = 2rt = 2 x 22/7 x 14 x 7 = 2 x 22 x 14 = 616 cm2

  • SOAL - 7Sebuah tangki berbentuk tabung tertutup, berisi penuh minyak tanah 770 liter. Jika panjang jari-jari alas tangki 70 cm, hitunglah luas selimut tangki!1 liter = 1 dm3 = 1.000 cm3

  • Pembahasan Diketahui: Volume = 770 liter = 770.000 cm3Jari-jari = 70 cm

    Tinggi = Volume : luas alas = 770.000 : 22/7 x 70 x 70 = 770.000 : 15.400 = 50 cm

  • Pembahasan Diketahui: Jari-jari tabung = 70 cm Tinggi tabung = 50 cm

    L. selimut = 2rt = 2 x 22/7 x 70 x 50 = 44 x 500 = 22.000 cm2 .

Embed Size (px)
Recommended