Top Banner

of 12

Apakah Yang Dimaksud Dengan Smoke Liquid

Oct 29, 2015

Download

Documents

Anita

CHEMISTRY
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

Apakah yang dimaksud dengan smoke liquid

Apakah yang dimaksud dengan smoke liquid ?Smoke Liquid atau Liquid Smoke atau lebih dikenal sebagai asap cair merupakan suatu hasil destilasi atau pengembunan dari uap hasil pembakaran tidak langsung maupun langsung dari bahan bahan yang banyak mengandung karbon serta senyawa-senyawa lain. Bahan baku yang banyak digunakan sekarang ini adalah kayu, bongkol kelapa sawit, ampas hasil penggergajian kayu, dll.Pada umumnya asap cair itu sendiri telah dikenal oleh beberapa negara seperti Jepang yang dibuat untuk bahan sebelum menggoreng ataupun memanggang daging.

Dilihat dari unsur-unsur yang menyusun dari asap cair itu, unsur fenol yang biasanya banyak dikandung oleh asap cair tersebut, dimana fenol itu sendiri kita kenal untuk salah satu unsur pembersih lantai dan desinfectan. Karena unsur fenol inilah yang dapat kita gunakan di industri karet untuk meninggikan kualitas karet baik itu di tingkat petani ataupun di pabrik karetnya.

Di tingkat petani adalah sbb :

1. jumlah asam semut yang digunakan petani karet akan bisa dikatakan tidak digunakan lagi,

2. lamanya pengeringan karet lebih cepat daripada menggunakan asam semut,

3. berbahayanya asam semut bila mengkontaminasi tubuh petani serta untuk lingkungan

4. lebih murahnya harga asap cair dibandingkan dengan asam semut.

5. Bau karet yang dihasilkan gak akan berbau seperti sebelumnya.

6. lebih mudah untuk dihandling, karena tidak berbahaya serta pemakaiannya pun hanya tinggal diencerkan dengan perbandingan 1:10.

Ditingkat industri karet adalah sbb :

1. karet yang dihasilkan oleh petani yang menggunakan asap cair akan lebih membuat kualitas karet olahan akan lebih baik, dimana telah dibuktikan oleh rekanan saya waktu praktek dahulu bahwa kualitas karet yang di cek oleh pabrik ban terkemuka dunia mengungkapkan bahwa ketika menggunakan karet olahan dari rekanan kami tersebut, ban yang dihasilkan bisa dikatakan gak ada expired time lagi walaupun disimpan di tempat penyimpanan, perlu kita ingat bahwa bila ban disimpan (tidak pernah digunakan) maka ban tersebut akan rusak serta benang - benang penyusun ban tersebut akan getas.

2. bersihnya proses yang akan dilalui oleh mesin pabrik, dimana dengan petani menggunakan asap cair tersebut, maka seluruh pengotor dan pemberat karet - karet dari petani akan lebih mudah diproses oleh mesin,

3. Aman bagi lingkungan, dengan limbah yang dihasilkan dari proses sehingga limbah yang dihasilkan pun tidak seberat bila petani tidak menggunakan asap cair perlu diingat bahwa asam semut masih ada terkandung di limbah bila petani masih menggunakan cara yang lama, dan bila masih menggunakan asam semut limbah yang dihasilkan pun harus diproses terlebih dahulu sehingga akan memakan biaya, dll bila dibandingkan dengan asap cair, pengolahan limbahnya hasil proses gak perlu yang terlalu rumit karena asap kandungan asap cair nya hanya tinggal di encerkan saja sehingga bsa langsung di buang tapi ingat ya harus sesuai dengan peraturan pamerintah setempat yang berlaku.

4. industri karet pasti gak akan lepas dari bau yang sangat menyengat, asap cair bisa menetralisir bau tersebut dengan menyemprotkan asap cair tersebut dengan komposisi tertentu, sehingga penduduk yang tinggal disekitar pabrik karet pun gak akan tercemari dengan adanya pabrik karet tersebut.

5. Selain itu fungsi asap cair bisa juga digunakan untuk bahan-bahan desinfectan serta penggumpal untuk limbah2-limbahindustri yang lain.

Mengapa Raksa (Hg) berbahaya bagi kesehatan?

Sebelum menjawab pertanyaan tersebut kita akan mengulas sedikit tentang pengertian HSAB. Prinsip dasar dari HSAB adalah: Hard Acid akan lebih memilih Hard Bases, Soft Acid akan lebih memilih Soft Bases. Karakterisasi dari Hard acid adalah Elektronegatifitas rendah (biasanya sekitar 0.7 - 1.6); Ukurannya relatif kecil; Muatannya relatif besar (>=3). Na+, Mg2+, Fe3+ dan Al3+ adalah contoh dari Hard Acid.

Karakterisasi dari Hard base adalah Elektronegatifitas tinggi (sekitar 3.4-4), Ukuran atom donornya relatif kecil. Contohnya: O2-, F-, OH2, CO3 2-, and PO43-.

Karakterisasi Soft Acid adalah Elektronegatifitasnya sekitar 1.9-2.5, Ukuran atomnya besar, muatannya rendah (1+, 2+). Contohnya: Cu+, Hg+, Au+, Ag+ dan Pb2+ (logam-logam tersebut terletak pada area yg sama di tabel periodik).

Karakterisasi Soft Base: elektronegatifitasnya sekitar 2.1-3.0, ukuran atomnya besar. contohnya: S2-, PEt3, RSe-, I- dan Br-.

Tambahan dari pengertian HSAB, ada lagi istilah "Borderline". Borderline acid berarti memiliki sifat asam diantara hard dan soft acids.Dengan kata lain, borderline ini memiliki muatan yang lebih rendah dan ukuran atom yang lebih besar dibanding hard acid; juga memiliki muatan yang lebih tinggi dan ukuran atom yang lebih kecil dari pada soft acid. Ion dengan muatan 2+ dari blok d, seperti Fe2+, Cu2+, Ni2+ dan Zn2+ merupakan contoh dari Borderline acids.

Sedangkan Borderline bases merupakan basa dengan sifat diantara hard dan soft bases. Basa dimana donor atomnya N atau Cl termasuk kategori tersebut. NH3, Cl-, RCl, dan piridine merupakan contoh Borderline bases.

Melihat pengertian diatas, sekarang apabila ada reaksi seperti berikut:HgCl2(aq) + (KF, KI)aq ---> ?Apakah produk yg terbentuk HgI2 atau HgF2?

Tentu saja, karena Soft Acid (Hg2+) akan lebih memilih Soft Base (I-), maka produk yang terbentuk adalah HgI2.

Melihat sedikit penjelasan di atas, ion dari logam berat yang termasuk Soft Acid, akan memiliki affinitas yang tinggi untuk ion S2- (yang merupakan soft base). Sulfur terdapat di rantai samping dari dua asam amino (methionine dan cystine). Kedua asam amino tersebut penting dalam mempertahankan struktur tertier dari protein dan enzim yang ada dalam tubuh manusia.Ketika Hg2+ terhirup kedalam tubuh, dan kemudian berkoordinasi dengan asam amino sulfur, akan segera merusak struktur protein dan mendeaktivasi protein.

Sebagai illustrasi ttg afinitas dari ion logam berat (seperti Hg2+) terhadap sulfur:

Solubilitas dari HgS yang terbentuk dalam larutan air adalah 10-50 M2, yang berarti HgS memiliki kelarutan 1x10-25 M dalam air. Arti dari angka tersebut berarti, dalam satu liter air akan ada kurang dari 1 ion Hg2+. Berdasarkan solubilitasnya, kita dapat menghitung bahwa untuk melarutkan 1 gram Hg2+, membutuhkan 4x1022 Liter air.

Suatu angka yang besar mengingat di dunia ini hanya ada 1x1021 Liter air.

Buffer dalamDarah

Buffer adalah zat yang dapat mempertahankan pH ketika ditambah sedikit asam/basa atau ketika diencerkan. Buffer terdiri dari asam lemah dan garamnya/basa konjugasinya atau basa lemah dan garamnya/asam konjugasinya. Salah satu contoh larutan buffer adalah darah. Buffer dalam darah terdiri dari H2CO3 ( asam lemah ) dan HCO3- ( basa konjugasinya ). Buffer tersebut dapat mempertahankan pH darah sekitar 7,35 7,45 dengan reaksi sebagai berikut ;

H2CO3 + OH- => HCO3- + H2O

HCO3- + H+ => H2CO3

Buffer dalam darah termasuk buffer asam. Buktinya, jika darah tidak memiliki buffer maka ketika minum jus jeruk yang kecut, tubuh kita dapat mengalami asidosis ( pH darah asam ).

Derajat keasaman merupakan suatu sifat kimia yang penting dari darah dan cairan tubuh lainnya. Satuan derajat keasaman adalah pH :

- pH 7,0 adalah netral

- pH di atas 7,0 adalah basa (alkali)

- pH di bawah 7,0 adalah asam.

Suatu asam kuat memiliki pH sangat rendah (hampir 1,0) ; sedangkan suatu basa kuat memiliki pH yang sangat tinggi (di atas 14,0).

Darah memiliki pH antara 7,35-7,45.

Keseimbangan asam-basa darah dikendalikan secara seksama, karena perubahan pH yang sangat kecilpun dapat memberikan efek yang serius terhadap beberapa organ.

Tubuh menggunakan 3 mekanisme untuk mengendalikan keseimbangan asam-basa darah:

1. Kelebihan asam akan dibuang oleh ginjal, sebagian besar dalam bentuk amonia. Ginjal memiliki kemampuan untuk merubah jumlah asam atau basa yang dibuang, yang biasanya berlangsung selama beberapa hari.

2. Tubuh menggunakan penyangga pH (buffer) dalam darah sebagai pelindung terhadap perubahan yang terjadi secara tiba-tiba dalam pH darah. Suatu penyangga pH bekerja secara kimiawi untuk meminimalkan perubahan pH suatu larutan, Penyangga pH yang paling penting dalam darah menggunakan bikarbonat. Bikarbonat (suatu komponen basa) berada dalam kesetimbangan dengan karbondioksida (suatu komponen asam). Jika lebih banyak asam yang masuk ke dalam aliran darah , maka akan dihasilkan lebih banyak bikarbonat dan lebih sedikit karbondioksida. Jika lebih banyak basa yang masuk ke dalam aliran darah , maka akan dihasilkan lebih banyak karbondioksida dan lebih sedikit bikarbonat.

3. Pembuangan karbondioksida.

Karbondioksida adalah hasil tambahan penting dari metabolisme oksigen dan terus menerus yang dihasilkan oleh sel. Darah membawa karbondioksida ke paru-paru dan di paru-paru karbondioksida tersebut dikeluarkan (dihembuskan). Pusat pernafasan di otak mengatur jumlah karbondioksida yang dihembuskan dengan mengendalikan kecepatan dan kedalaman pernafasan. Jika pernafasan meningkat, kadar karbondioksida darah menurun dan darah menjadi lebih basa. Jika pernafasan menurun, kadar karbondioksida darah meningkat dan darah menjadi lebih asam. Dengan mengatur kecepatan dan kedalaman pernafasan, maka pusat pernafasan dan paru-paru mampu mengatur pH darah menit demi menit.

Adanya kelainan pada satu atau lebih mekanisme pengendalian pH tersebut, bisa menyebabkan salah satu dari 2 kelainan utama dalam keseimbangan asam basa, yaitu asidosis atau alkalosis.

Asidosis adalah suatu keadaan dimana darah terlalu banyak mengandung asam (atau terlalu sedikit mengandung basa) dan sering menyebabkan menurunnya pH darah.

Alkalosis adalah suatu keadaan dimana darah terlalu banyak mengandung basa (atau terlalu sedikit mengandung asam) dan kadang menyebabkan meningkatnya pH darah.

Asidosis dan alkalosis bukan merupakan suatu penyakit tetapi lebih merupakan suatu akibat dari sejumlah penyakit. Terjadinya asidosis dan alkalosis merupakan petunjuk dari adanya masalah metabolisme yang serius.

Asidosis dan alkalosis dikelompokkan menjadi metabolik atau respiratorik, tergantung kepada penyebab utamanya. Asidosis metabolik dan alkalosis metabolik disebabkan oleh ketidakseimbangan dalam pembentukan dan pembuangan asam atau basa oleh ginjal. Asidosis respiratorik atau alkakosis respiratorik terutama disebabkan oleh penyakit paru-paru atau kelainan pernafasan.

Ancaman Polutan Dalam Ruangan

Kita umumnya berpikir otomotif dan industri adalah sumber utama dari polusi. Pakta Clean Air tahun 1970, direvisi tahun 1990, telah berhasil mengurangi beberapa emisi di ruang terbuka; namun ancaman polutan seseorang mungkin lebih besar berada di dalam ruangan dibandingkan di ruang terbuka.

Sebagai contoh, cat kuku melepaskan lebih banyak formaldehida / formalin (H2CO) dibandingkan dengan papan kayu yang umum digunakan di konstruksi bangunan di amerika. Formaldehida adalah sebuah senyawa organik yang volatil (SOV), dan umum digunakan sebagai pembersih lantai dan bahan pelapis.

Benzen (C6H6), sebuah SOV lainnya adalah bahan karsinogen. Seorang peneliti dari Environmental Protection Agency Amerika, Lance A. Wallace mengidentifikasi sumber dari semua emisi benzen dan membandingkannya dengan sumber-sumber benzen yang umumnya masyarakat hirup. Hasil yang ditunjukkan oleh grafik dibawah mengindikasikan bahwa 45% dari pendedahan masyarakat Amerika terhadap benzen berasal dari kegiatan merokok, baik aktif dan pasif. Namun asap tembakau hanya bernilai 0,1% dari emisi total. Selain itu, otomotif adalah penyumbang terbesar dari benzen yang berada di atmosfer (82%), namun benzen yang berasal dari sumber ini hanya 36% dari pendedahan seorang individu terhadap benzen di Amerika.

Dalam kata lain, jika semua emisi benzen dikurangi di atmosfer maka dampaknya terhadap pendedahan seseorang terhadap benzen jauh lebih kecil dibandingkan bila kita mengurangi kegiatan merokok. Jadi secara ironis, bila kita ingin menyelamatkan diri maka bukan asap kendaraan lah yang perlu kita kurangi, tetapi mengurangi dan menghilangkan kegiatan merokok.

Pendedahan terhadap bahan kimia toksik lainnya cenderung disebabkan produk-produk dalam ruangan. Sebagai contoh, penyemprot ruangan, obat nyamuk, dan karbol adalah sumber paradiklorobenzen (C6H4Cl2), yang digolongkan sebagai SOV dan karsinogen. Pendedahan terhadap pestisida lebih sering terjadi di dalam ruangan dibandingkan di ruang terbuka. Contoh lain SOV adalah tetrakloroetilen (C2Cl4), digunakan sebagai bahan pembersih dalam pencucian pakaian dengan metode dry-clean. Pemanggang dan alat dapur lain yang tidak diset dengan baik dapat melepaskan karbon monoksida di dalam rumah.

Divisi Seattle dari American Lung Asssociation mensponsori sebuah program bernama "Master Home Environmentalists", dimana sukarelawan terlatih menolong para warga untuk mengkontrol bahan kimia di dalam rumah. Program ini telah menolong para penderita asma untuk menghilangkan polutan dalam ruangan.

Salah satu penyumbang terbesar polutan dalam ruangan adalah pembersihan karpet, karena ini mengumpulkan beberapa senyawa kimia yang masuk ke dalam rumah. Seorang anak memiliki tingkat dedah terhadap kadmium, timbal, bifenil terpoliklorinasi dan logam lainnya berasal dari pembersihan karpet. Debu juga merupakan masalah kesehatan, terutama partikel-partikel dengan ukuran 10 mikron dan yang lebih kecil.

Banyak sumber polutan rumah tangga dapat dikontrol bahkan dihilangkan. Hal sederhana seperti menggunakan karpet di depan pintu dapat mengurangi senyawa-senyawa kimia berbahaya yang dapat masuk ke dalam rumah. Tips lainnya dalah hilangkan penyemprot ruangan dan sumber lain paradiklorobenzen. Jangan menyimpan bensin di ruangan bawah tanah. Gunakan penyedot debu yang baik untuk pembersihan karpet.

Pupuk Kompos, Keniscayaan bagi Tanaman Akhir-akhir ini, kebutuhan akan penggunaan pupuk kimia untuk lahan pertanian semakin meningkat. Sementara pupuk organik (kompos) mulai ditinggalkan. Sebelum diperkenalkannya pupuk kimia ini kepada masyarakat, kompos telah menjadi kebutuhan dan incaran petani untuk meningkatkan produksi pertaniannya. Kini para petani lebih menyukai pupuk kimia dibandingkan kompos. Mereka beralasan pupuk kimia mempunyai kandungan unsur hara yang baik dan dapat meningkatkan kualitas dan kuantitas produksi. Sedangkan kompos, menurut mereka, tidak mampu meningkatkan kualitas dan kuantitas produksi. Bahkan beberapa petani menggunakan pupuk kimia secara berlebihan.

Diakui, pada pemakaian pertama pupuk kimia pada lahan pertanian memang kuantitas produksi meningkat drastis, lebih banyak dari pada penggunaan pupuk kompos. Seiring dengan berjalannya waktu, apa yang selama ini dikhawatirkan muncul, produksi pertanianpun menurun. Namun, petanipun tak juga sadar, malah semakin menambah kuantitas pupuk kimia yang digunakan, dengan harapan produksi kembali stabil. Tahun berganti tahun, harapan para petani akan meningkatnya produksi mereka tak kunjung datang, kuantitas produksi malah semakin menurun.

Memang benar, pupuk kimia mengandung unsur hara dan nutrisi lebih banyak dibandingkan kompos. Namun hanya sebatas itu. Pupuk kimia terbukti tidak mampu memperbaiki kondisi tanah. Sedangkan kompos, meskipun mengandung unsur hara yang lebih sedikit dari pada pupuk kimia, namun dapat memperbaiki kondisi tanah dan menjaga fungsi tanah agar unsur hara yang terkandung dalam tanah lebih mudah diserap oleh tanaman.

Pada dasarnya, penggunaan pupuk kimia tidak menjadi masalah serius jika digunakan seimbang dengan kompos. Yang perlu menjadi cacatan kita adalah tidak menggunakan pupuk kimia secara berlebihan. Hal ini dikarenakan pupuk kimia dapat mencemari dan merusak lingkungan (tanah) jika digunakan berlebihan. Dibandingkan kompos, pupuk kimia sangat sulit diserap oleh tanaman, sulit diuraikan air, dan dapat meracuni produk yang dihasilkan oleh tanaman.

Hasil penelitian menunjukkan pupuk kimia mengandung radikal bebas dan berbahaya bagi manusia karena dapat mengendap didalam buah yang dihasilkan. Sebagian pupuk kimia yang tidak diserap oleh tanaman juga akan menumpuk ditanah dan tidak dapat diuraikan oleh air. Kondisi seperti ini menjadikan tanah tidak produtif. Akibatnya mikroorganisme yang bertugas menggemburkan tanah tidak akan beraktivitas ditanah tersebut.

Mikroorganisme yang ada didalam tanah lebih menyukai kompos dibandingkan pupuk kimia. Kondisi kompos yang alami memudahkan mikroorganisme didalam tanah untuk berkembang dan beraktivitas.Hasil penelitian juga mengungkapkan kompos mampu menetralkan pH tanah. Tanaman lebih mudah menyerap unsur hara pada kondisi pH tanah yang netral (pH=7). Kondisi seperti ini tidak mampu dilakukan dengan penggunaan pupuk kimia semata.

Sampah Kota sebagai KomposDalam masalah pengelolaan sampah, Indonesia harus belajar banyak dengan negara-negara maju dan berkembang lainnya. Dibeberapa negara maju, masalah pengelolaan sampah menjadi perhatian serius bagi pemerintah, sama serius dengan masalah ekonomi. Hal ini dikarenakan, disatu sisi sampah dapat berdaya guna dan memberikan keuntungan secara ekonomi jika didaur ulang dan diubah dalam bentuk yang lebih bermanfaat. Disisi lain, sampah-sampah yang tidak dibudidayagunakan dan menumpuk disuatu tempat dapat menjadi sarang penyakit serta mengeluarkan bau yang tidak sedap. Dari segi estetikapun akan tampak kurang bagus.

Sejauh ini, penulis mengamati sampah kota kurang menjadi perhatian dan dimanfaatkan. Dalam masalah pengelolaan sampah ini, umumnya, pemerintah kota di Indonesia masih memakai cara lama, yaitu mengumpulkan sampah-sampah dari masyarakat dan menumpukkannya ke suatu tempat khusus pembuangan sampah. yang dinamakan TPA (Tempat Pembuangan Sampah Akhir). Disamping menimbulkan bau yang tidak sedap, sampah yang ditumpuk tersebut dapat menjadi sarang penyakit. Jika daerah tempat pembuangan sampah tersebut sudah penuh, maka pemerintah membuka tempat pembuangan sampah yang baru. Lagi-lagi menghabiskan biaya untuk pembukaan lahan baru.

Alangkah bijaksananya jika sampah-sampah yang ditumpuk tersebut dimanfaatkan kembali menjadi barang yang lebih berguna dan bermanfaat seperti dijadikan kompos. Biaya yang telah dianggarkan untuk pembukaan tempat pembuangan sampah baru dapat dialokasikan untuk pengelolaan kompos. Penulis mengambil contoh sampah-sampah buangan dari para pedagang di Pasar Raya Padang. Jika sampah-sampah yang berupa daun-daunan, kulit-kulit buah-buahan, ampas tebu, sisa-sisa makanan, dan sebagainya ini dikumpulkan, bisa diolah menjadi kompos yang bernilai ekonomi. Pemerintah atau swasta dapat membuat industri pengolahan sampah-sampah ini menjadi kompos. Dalam jumlah besar, industri pembuatan kompos cukup menjanjikan dan dapat menambah pendapatan daerah.

Beberapa fakta seputar kaca Kaca adalah salah satu produk industri kimia yang paling akrab dengan kehidupan kita sehari-hari. Tetapi seberapa banyakkah yang kita ketahui tentang senyawa unik ini? Inilah beberapa fakta tentang kaca.

Dipandang dari segi fisika kaca merupakan zat cair yang sangat dingin. Disebut demikian karena struktur partikel-partikel penyusunnya yang saling berjauhan seperti dalam zat cair namun dia sendiri berwujud padat. Ini terjadi akibat proses pendinginan (cooling) yang sangat cepat, sehingga partikel-partikel silika tidak sempat menyusun diri secara teratur. Dari segi kimia, kaca adalah gabungan dari berbagai oksida anorganik yang tidak mudah menguap , yang dihasilkan dari dekomposisi dan peleburan senyawa alkali dan alkali tanah, pasir serta berbagai penyusun lainnya. Kaca memiliki sifat-sifat yang khas dibanding dengan golongan keramik lainnya. Kekhasan sifat-sifat kaca ini terutama dipengaruhi oleh keunikan silika (SiO2) dan proses pembentukannya.

Beberapa sifat-sifat kaca secara umum adalah: Padatan amorf (short range order).

Berwujud padat tapi susunan atom-atomnya seperti pada zat cair.

Tidak memiliki titik lebur yang pasti (ada range tertentu)

Mempunyai viskositas cukup tinggi (lebih besar dari 1012 Pa.s)

Transparan, tahan terhadap serangan kimia, kecuali hidrogen fluorida. Karena itulah kaca banyak dipakai untuk peralatan laboratorium.

Efektif sebagai isolator.

Mampu menahan vakum tetapi rapuh terhadap benturan.

Sebagaimana bahan-bahan yang sangat banyak digunakan dalam peradaban modern, riwayat penemuan kaca tidaklah jelas sama sekali. Salah satu rujukan yang paling tua mengenai bahan ini dibuat oleh Pliny, yang menceritakan bagaimana pedagang-pedangang phoenisia purba menemukan kaca tatkala memasak makanan. Periuk yang digunakannya secara tidak sengaja diletakkan di atas massa trona di suatu pantai. Penyatuan yang terjadi antara pasir dan alkali menarik perhatian dan orang Mesir telah berusaha menirunya. Sejak tahun 6000 atau 5000 sebelum Masehi, orang mesir telah membuat permata tiruan dari kaca dengan ketrampilan yang halus dan keindahan yang mengesankan. Kaca jendela sudah mulai disebut-sebut sejak tahun 290. Silinder kaca jendela tiup ditemukan oleh para pendeta pada abad kedua belas. Dalam abad tengah, Venesia memegang monopoli sebagai pusat industi kaca. Di jerman dan inggris, kaca baru mulai dibuat pada abad ke-16. Secara keseluruhan sebelum tahun 1900, industri ini merupakan seni yang dilengkapi oleh rumus-rumus rahasia yang dijaga ketat. Proses pembuatannya-pun bersifat empiris dan hanya berdasarkan pada pengalaman.

Pada tahun 1914, di Belgia dikembangkan proses Fourcault untuk menarik kaca plat secara kontiniu. Selama 50 tahun berikutnya para ilmuwan dan insinyur telah berhasil menciptakan berbagai modifiklasi terhadap proses penarikan kaca dengan tujuan untuk memperkecil distorsi optik kaca lembaran (kaca jendela) dan menurunkan biaya pembuatan.

Reaksi yang terjadi dalam pembuatan kaca secara ringkas adalah sebagai berikut:Na2CO3 + aSiO2 ? Na2O.aSiO2 + CO2CaCO3 + bSiO2 ? CaO.bSiO2 + CO2Na2SO4 + cSiO2 + C ? Na2O.cSiO2 + SO2 + SO2 + CO

Walaupun saat ini terdapat ribuan macam formulasi kaca yang dikembangkan dalam 30 tahun terakhir ini namun gamping, silika dan soda masih merupakan bahan baku dari 90 persen kaca yang diproduksi di dunia.

Kuarsa (SiO2), salah satu bentuk polimorfi silika

Secara umum, kaca komersial dapat dikelompokkan menjadi beberapa golongan:

1. Silika lebur. Silika lebur atau silika vitreo dibuat melalui pirolisis silikon tetraklorida pada suhu tinggi, atau dari peleburan kuarsa atau pasir murni. Secara salah kaprah, kaca ini sering disebut kaca kuarsa (quartz glass). Kaca ini mempunyai ciri-ciri nilai ekspansi rendah dan titik pelunakan tinggi. Karena itu, kaca ini mempunyai ketahanan termal lebih tinggi daripada kaca lain. Kaca ini juga sangat transparan terhadap radiasi ultraviolet. Kaca jenis inilah yang sering digunakan sebagai kuvet untuk spektrometer UV-Visible yang harganya sekitar dua jutaan per kuvet.

2. Alkali silikat. Alkali silikat adalah satu-satunya kaca dua komponen yang secara komersial, penting. Untuk membuatnya, pasir dan soda dilebur bersama-sama, dan hasilnya disebut Natrium silikat. Larutan silikat soda juga dikenal sebagai kaca larut air (water soluble glass) banyak dipakai sebagai adhesif dalam pembuatan kotak-kotak karton gelombang serta memberi sifat tahan api.

3. Kaca soda gamping. Kaca soda gamping (soda-lime glass) merupakan 95 persen dari semua kaca yang dihasilkan. Kaca ini digunakan untuk membuat segala macam bejana, kaca lembaran, jendela mobil dan barang pecah belah.

4. Kaca timbal. Dengan menggunakan oksida timbal sebagai pengganti kalsium dalam campuran kaca cair, didapatlah kaca timbal (lead glass). Kaca ini sangat penting dalam bidang optik, karena mempunyai indeks refraksi dan dispersi yang tinggi. Kandungan timbalnya bisa mencapai 82% (densitas 8,0, indeks bias 2,2). Kandungan timbal inilah yang memberikan kecemerlangan pada kaca potong (cut glass). Kaca ini juga digunakan dalam jumlah besar untuk membuat bola lampu, lampu reklame neon, radiotron, terutama karena kaca ini mempunyai tahanan (resistance) listrik tinggi. Kaca ini juga cocok dipakai sebagai perisai radiasi nuklir.

5. Kaca borosilikat. Kaca borosilikat biasanya mengandung 10 sampai 20% B2O3, 80% sampai 87% silika, dan kurang dari 10% Na2O. Kaca jenis ini mempunyai koefisien ekspansi termal rendah, lebih tahan terhadap kejutan dan mempunyai stabilitas kimia tinggi, serta tahanan listrik tinggi. Perabot laboratorium yang dibuat dari kaca ini dikenal dengan nama dagang pyrex. Kaca borosilikat juga digunakan sebagai isolator tegangan tinggi, pipa lensa teleskop seperti misalnya lensa 500 cm di Mt. Palomer (AS).

6. Kaca khusus. Kaca berwarna , bersalut, opal, translusen, kaca keselamatan,fitokrom, kaca optik dan kaca keramik semuanya termasuk kaca khusus. Komposisinya berbeda-beda tergantung pada produk akhir yang diinginkan.

7. Serat kaca (fiber glass). Serat kaca dibuat dari komposisi kaca khusus, yang tahan terhadap kondisi cuaca. Kaca ini biasanya mempunyai kandungan silika sekitar 55%, dan alkali lebih rendah.

Pembangkit Listrik Tenaga Surya: Memecah Kebuntuan Kebutuhan Energi Nasional dan Dampak Pencemaran Lingkungan Beberapa tahun belakangan ini Perusahaan Listrik Negara (PLN) kita gencar mensosialisasikan program hemat listrik dari pukul 17.00 hingga 22.00. Alasan PLN melakukan ini adalah untuk efisiensi energi terutama dalam menghadapi beban puncak pada jam tersebut. Oleh karena itu masalah peningkatan konsumsi energi nasional ini harus segera dipecahkan. Perlu kita pahami, kebutuhan energi global dalam 30 tahun ke depan akan meningkat dua kali lipat per tahunnya. Pada 40 tahun mendatang, kebutuhan meningkat lagi menjadi tiga kali lipat atau setara dengan energi 20 miliar ton minyak bumi. Memang selama ini menurut Energy Information Administration (EIA) memperkirakan pemakaian energi hingga tahun 2025 masih didominasi bahan bakar fosil, yakni minyak bumi, gas alam, dan batubara. Permasalahannya yaitu menurut data Departemen ESDM juga menyebutkan, cadangan minyak bumi di Indonesia hanya cukup untuk 18 tahun kedepan, sedangkan gas bumi masih bisa mencukupi hingga 61 tahun lagi. Kemudian cadangan batubara diperkirakan habis dalam waktu 147 tahun lagi.

Energi alternatif

Salah satu langkah konkrit PLN yang akan diwujudkan hingga tahun 2009 adalah dengan membangun proyek PLTU 10.000 MW. Mungkin beberapa alasan memilih solusi ini karena selama ini kebutuhan listrik Negara 30 % disumbang oleh PLTU Suralaya yang berbahan baku batubara dan seperti yang dikemukakan diatas bahwa cadangan batubara nasional cukup tinggi. Permasalahannya adalah sumber utama penghasil emisi karbondioksida secara global, yaitu pembangkit listrik bertenaga batubara. Pembangkit listrik ini membuang energi dua kali lipat dari energi yang dihasilkan. Semisal, energi yang digunakan 100 unit, sementara energi yang dihasilkan 35 unit. Maka, energi yang terbuang adalah 65 unit! Setiap 1000 megawatt yang dihasilkan dari pembangkit listrik bertenaga batubara akan mengemisikan 5,6 juta ton karbondioksida per tahun yang merupakan salah satu gas rumah kaca penyebab global warming.

Selanjutnya apabila kita menggunakan bahan bakar gas, memang relatif murah dan ramah lingkungan. Namun cadangan gas bumi kita terbatas. Belum lagi persaingan dengan konsumsi publik karena PT. Pertamina saat ini melakukan program konversi minyak tanah ke bahan bakar gas. Jelas hal ini merupakan dua hal yang kompetitif.

Selain itu ada juga pemanfaatan energi panas bumi bisa menjadi alternatif yang murah dan ramah lingkungan. Tetapi pemanfaatan energi panas bumi tidak bisa maksimal karena persediaannya sangat terbatas dan teknologi untuk mengelolanya dianggap mahal. Bagaimana dengan energi tenaga air? Energi ini termasuk yang paling murah untuk dimanfaatkan. Namun, kendala yang kerap terjadi adalah ketika musim kemarau tiba. Sumber-sumber air yang digunakan sebagai pembangkit seringkali menyurut dan jauh berkurang sehingga tidak dapat beroperasi secara optimal.

Selanjutnya bagaimana dengan teknologi nuklir? Mungkin secara teknologi bangsa kita sudah bisa mampu. Namun sejarah mengenai kasus teknologi ini di Uni Soviet maupun tragedi Hiroshima dan Nagasaki menjadi trauma bagi dunia pada umumnya. Tentunya permasalahannya adalah waktu sosialisasi yang cukup lama terhadap penanganan resiko dari teknologi ini.

Sebagai salah satu solusi masalah energi diatas yaitu energi matahari atau tenaga surya. Energi matahari yang dipancarkan ke planet bumi adalah 15.000 kali lebih besar dibandingkan dengan penggunaan energi global dan 100 kali lebih besar dibandingkan dengan cadangan batubara, gas, dan minyak bumi. Permasalahan energi matahari ini mungkin sedikit banyak mirip dengan energi nuklir. Sebenarnya secara teknologi bangsa Indonesia sudah mampu mengelolanya. Bahkan teknologi mutakhir telah mampu mengubah 10-20 % pancaran sinar matahari menjadi tenaga surya. Secara teoritis untuk mencukupi kebutuhan energi global, penempatan peralatan tersebut hanya memerlukan kurang dari satu persen permukaan bumi, bukankah suatu hal yang efisien!

Namun sebagai negara yang terletak di garis khatulistiwa bumi sehingga memiliki energi sinar matahari berlimpah tidak dapat memanfaatkannya secara baik. Pemanfaatan energi matahari selama ini baru digunakan sebagai pemanas air di rumah-rumah mewah maupun hotel, itupun masih produk impor. Padahal, di negara-negara Eropa utara yang relatif miskin sinar matahari, justru banyak memanfaatkan energi matahari sebagai energi terbaharukan, ramah lingkungan, dan murah. Bagaimana dengan bangsa Indonesia?

Pertimbangan Ekonomi

Mungkin kita pernah kaget karena harga minyak bumi yang terus melambung sempat menembus angkan US$ 76 per barel sehingga menyebabkan pembengkakan anggaran dan menekan nilai tukar rupiah. Oleh karena itu pemanfaatan energi matahari merupakan solusi yang ekonomis. Jika ada pendapat bahwa pemanfaatan energi matahari memerlukan biaya tinggi, itu merupakan pendapat yang perlu dipertanyakan. Perlu diakui bahwa untuk investasi awal cukup mahal. Namun dalam biaya operasionalnya terbilang murah ketimbang pemanfaatan energi gas bumi maupun batubara. Justru kita mendapatkan bahan bakunya secara gratis!

Negara kita setiap tahunnya menadapat energi matahari sebesar 2.500 kW per jam-nya (sumber lainnya mengatakan bumi secara tak henti disinari energi sebesar 17 triliun kW). Jelas ini merupakan potensi. Mengutip tulisan dari Ivan A. Hadar dari Infid, energi matahari dapat dimanfaatkan secara solar thermal dan photogalvanic. Pada prinsipnya solar thermal yaitu sinar matahari diperkuat cermin yang mengalihkan ke alat penyerap berisi cairan. Cairan ini kemudian memanas dan menghasilkan uap yang membangkitkan generator turbo pembangkit tenaga listrik. Di California, AS, alat ini telah mampu menghasilkan listrik sebesar 354 MW. Dengan memproduksinya secara massal, harga satuan energi matahari ini di AS, hanya sekitar Rp 100.000 per kW per jam-nya. Hal ini tentu lebih murah ketimbang energi nuklir dan sama dengan energi dari pembangkit listrik berbahan baku fosil.

Sedangkan pembangkit listrik photogalvanic, pengunaannya menggunakan sel-sel photogalvanic. Sebagai akibat sengatan sinar matahari, sel-sel tersebut melepaskan elektron yang dipaksa berputar dengan dampak terjadinya aliran listrik. Sel-sel tersebut dikemas dan dijual dalam bentuk modul dan dapat digunakan pada teknologi tegangan tinggi. Memang untuk saat ini modulnya terbilang cukup mahal. Namun perkembangan kedepannya diperkirakan harga akan menurun. Sebab salah satu pasarnya adalah mobil tenaga listrik yang diramalkan akan menjadi mobil masa depan.

Lalu apa solusinya?

Berdasarkan uraian diatas, hendaknya pemerintah lebih proaktif untuk mencari sumber energi baru dan terbaharukan. Ada beberapa langkah yang dapat menjadi bahan pemikiran kita bersama. Pertama, diversifikasi penelitian dan pengembangan energi matahari. Dana untuk penelitian dan pengembangan energi alternatif perlu ditingkatkan tiap tahunnya. Kedua, dengan perkembangan teknologi, khususnya biaya produksi energi surya dapat bersaing dengan energi fosil. Ketiga, kemauan politik dari semua pihak harus tinggi. Sehingga apabila dilakukan produksi energi matahari secara masal, maka sumber energi ini tereksplorasi sebagai energi utama di masa depan.

Yang pasti, kedepannya kita tidak akan meninggalkan krisis energi bagi anak cucu bangsa Indonesia. Justru mewariskan teknolgi masa depan yang mutakhir. Teknologi yang murah, ramah lingkungan dan efisien.

Air, Si Molekul Ajaib

Air, yang merupakan sebuah zat cair istimewa untuk kehidupan, menutupi dua pertiga dari permukaan bumi. Tubuh setiap makhluk hidup di bumi terbentuk dari cairan yang sangat istimewa ini dengan perbandingan antara 50% - 95%. Dari bakteri yang hidup di sumber air panas dengan suhu yang mendekati titik didih air, sampai beberapa jenis lumut yang tumbuh pada gletser, kehidupan ada di setiap tempat dimana terdapat air, tanpa memandang suhu. Bahkan pada setetes air yang tergantung di ujung sebuah daun setelah hujan, ribuan mikroorganisme hidup muncul, bereproduksi, dan mati.

Tapi tahukah anda bahwa ternyata molekul air, yang merupakan dasar kehidupan di bumi, sangat sulit terbentuk. Pertama-tama, mari kita membayangkan molekul hidrogen dan oksigen, yang merupakan komponen air, dimasukkan ke dalam sebuah wadah kaca. Selanjutnya kita biarkan keduanya berada di wadah tersebut dalam jangka waktu yang sangat lama. Dalam waktu selama itu mungkin gas-gas ini belum membentuk air bahkan jika keduanya tetap berada dalam wadah tersebut selama ratusan tahun. Kalaupun terbentuk air, tidak akan lebih dari segelintir pada dasar wadah dan itupun akan terjadi dengan sangat lambat, bisa sampai ribuan tahun.

Penyebab mengapa air sangat lambat terbentuk pada kondisi-kondisi ini adalah suhu. Pada suhu kamar, oksigen dan air bereaksi sangat lambat.

Dalam keadaan bebas, oksigen dan hidrogen ditemukan sebagai molekul H2 dan O2. Untuk bergabung membentuk molekul air, keduanya harus bertubrukan. Sebagai hasil dari tubrukan ini, ikatan-ikatan yang membentuk molekul hidrogen dan oksigen melemah, sehingga tidak ada lagi penghalang untuk bergabungnya atom oksigen dan hidrogen. Suhu akan meningkatkan energi begitu juga kecepatan molekul-molekul ini, sehingga jumlah tubrukan yang terjadi meningkat. Akibatnya, reaksi yang terjadi dipercepat. Akan tetapi, sekarang ini, tidak ada lagi suhu yang cukup tinggi untuk membentuk air di bumi. Panas yang diperlukan untuk pembentukan air disuplai selama terbentuknya bumi ini, yang mana menghasilkan munculnya banyak air sebanyak yang menutupi tiga perempat permukaan bumi. Saat ini, air menguap dan naik ke atomosfir dimana kemudian dia menjadi dingin dan kembali ke bumi dalam bentuk hujan. Olehnya itu, jumlah air tidak bertambah tapi hanya mengalami siklus yang terus menerus.

Sifat-sifat air yang menakjubkanAir memiliki banyak sifat kimiawi yang unik. Setiap molekul air terbentuk oleh kombinasi antara atom hidrogen dan oksigen. Cukup menarik bahwa kedua gas ini, satu mudah membakar dan yang lainnya mudah terbakar, bergabung membentuk sebuah cairan, dan lebih menariknya, cairan itu adalah air.

Sekarang, mari kita lihat secara ringkas bagaimana air terbentuk secara kimiawi. Muatan listrik air adalah nol, yakni bermuatan netral. Sekalipun begitu, karena ukuran atom oksigen dan hidrogen, komponen oksigen dari molekul air memiliki muatan yang sedikit negatif dan komponen hidrogennya sedikit bermuatan positif. Jika ada lebih dari satu molekul air yang bergabung, muatan positif dan negatif tersebut akan tarik-menarik membentuk sebuah ikatan yang sangat istimewa, yaitu "ikatan hidrogen". katan hidrogen merupakan sebuah ikatan yang sangat lemah dan memiliki masa yang sangat singkat. Durasi sebuah ikatan hidrogen adalah sekitar seper seratus milyar detik. Tetapi begitu sebuah ikatan putus, ikatan yang lainnya langsung terbentuk. Karenanya, molekul-molekul air saling menempel dengan rapat meskipun juga tetap mempertahankan bentuk cairnya karena molekul-molekulnya disatukan oleh sebuah ikatan lemah.

Ikatan hidrogen juga memungkinkan air untuk melawan perubahan suhu. Walaupun suhu udara meningkat secara tiba-tiba, suhu air hanya meningkat perlahan, dan demikian juga, jika suhu udara turun secara tiba-tiba, suhu air berkurang secara perlahan. Diperlukan perubahan suhu yang besar agar perubahan suhu air berlangsung cepat. Energi termal air yang sangat tinggi memiliki manfaat besar bagi kehidupan. Sebagai contoh sederhana, terdapat banyak air dalam tubuh kita. Jika air beradaptasi dengan perubahan suhu yang terjadi secara tiba-tiba di udara dengan laju perubahan yang sama, maka kita akan mengalami panas demam atau membeku secara tiba-tiba.

Begitu juga, air memerlukan energi termal yang sangat besar untuk menguap. Karena begitu banyak energi termal yang digunakan saat menguap, suhunya menurun. Sebagai contoh, lagi-lagi dari tubuh manusia, suhu normal tubuh adalah 36C dan suhu tubuh tertinggi yang bisa ditolerir adalah 42C. Selisih 6C ini tentu sangat kecil dan bahkan beraktivitas beberapa jam saja di bawah sinar matahari bisa meningkatkan suhu tubuh sebesar itu. Sekalipun begitu, tubuh kita menghabiskan banyak energi termal melalui keringat, yakni, dengan menyebabkan air yang dikandungnya menguap, yang selanjutnya menyebabkan suhu tubuh menurun. Jika tubuh kita tidak memiliki mekanisme otomatis seperti ini, maka beraktivitas di bawah sinar matahari beberapa jam saja dapat berakibat fatal.

Ikatan hidrogen juga melengkapi air dengan sifat luar biasa lainnya, yaitu air lebih kental dalam wujud cair dibanding dalam wujud padat. Sebenarnya, hampir semua zat di bumi ini lebih kental dalam wujud padat dibanding dalam wujud cairnya. Akan tetapi, berbeda dengan zat-zat yang lain, air mengembang saat membeku. Ini karena ikatan hidrogen mencegah molekul-molekul air untuk berikatan satu sama lain dengan sangat rapat, sehingga banyak celah yang tersisa diantara molekul-molekul tersebut. Ikatan hidrogen terputus apabila air berada dalam wujud cair, sehingga menyebabkan atom-atom oksigen lebih berdekatan satu sama lain dan membentuk sebuah struktur yang lebih kental.

Ini juga yang menyebabkan es lebih ringan dari air. Umumnya, jika anda melelehkan logam manapun dan ke dalam lelehan tersebut dimasukkan beberapa lempeng logam yang sama, maka lempeng-lempeng ini akan tenggelam langsung ke dasar. Akan tetapi, pada air hal yang terjadi berbeda. Gunung es yang beratnya ribuan ton akan terapung di atas air seperti gabus. Manfaat apa yang diberikan oleh sifat air yang unik ini?

Mari kita menjawab pertanyaan ini dengan mengambil contoh sebuah sungai: Jika cuaca sangat dingin, air sungai tidak akan membeku seluruhnya, tapi hanya permukaannya saja yang membeku. Air mencapai wujud terberatnya pada suhu +4C, dan segera setelah mencapai suhu ini, dia akan tenggelam ke dasar. Es terbentuk pada permukaan air sebagai sebuah lapisan. Di bawah lapisan ini, air masih terus mengalir, dan karena +4C adalah suhu dimana organisme hidup bisa bertahan, maka kehidupan dalam air terus berlanjut.

Sifat khusus air yang sangat menarikKita semua tahu bahwa air mendidih pada suhu 100C dan membeku pada suhu 0C. Tetapi sebenarnya, pada kondisi normal, air seharusnya mendidih pada suhu +180C bukan pada suhu 100C. Mengapa?

Dalam tabel periodik, sifat-sifat dari unsur-unsur yang terdapat di dalam golongan yang sama bervariasi secara progresif dari unsur yang ringan sampai unsur yang berat. Fakta ini dapat dilihat dengan jelas pada senyawa-senyawa hidrogen. Senyawa dari unsur-unsur yang segolongan dengan oksigen dalam tabel periodik disebut sebagai "hidrida". Jadi air (H2O) adalah "oksigen hidrida". Hidrida dari unsur-unsur lain dalam golongan ini memiliki struktur molekul yang sama seperti molekul air.

Titik didih senyawa-senyawa ini berbeda-beda dan semakin meningkat dari unsur belerang ke unsur yang lebih berat; akan tetapi, titik didih air tidak mengikuti pola ini. Air (oksigen hidrida) mendidih pada suhu yang 80C lebih rendah dari yang seharusnya. Situasi yang mengherankan lainnya juga terjadi pada titih beku air. Lagi-lagi, menurut orde dalam sistem periodik, air seharusnya membeku pada suhu -100C. Akan tetapi, air tidak memenuhi kaidah ini dan membeku pada suhu 0C, sebuah suhu yang 100C lebih tinggi dari titik beku seharusnya. Hal ini tentu menimbulkan pertanyaan dalam benak kita seperti mengapa bukan hidrida lain, tapi hanya air (oksigen hidrida) yang tidak memenuhi kaidah dari sistem periodik ini?

Rekayasa Plastik dari Kulit Buah Jeruk

Jangan buang kulit jeruk itu! Mungkin itulah sepenggal kata yang diucapkan oleh kedua orang tua kita setelah kita mengupas kulit jeruk bali. Hal ini karena saat itu mainan anak-anak banyak yang terbuat dari limbah rumah tangga seperti kulit jeruk. Kita masih ingat dengan kulit jeruk kita dapat membuat mobil-mobilan untuk mainan anak saat kita kecil dulu. Namun dalam dua dasawarsa terakhir mainan anak-anak telah lebih modern bahkan menggunakan teknologi canggih. Kemajuan teknologi telah merubah semua itu, sebagian besar mainan anak sat ini dibuat dari plastik karena memiliki daya tahan yang baik sehingga awet serta relatif aman untuk anak. Akan tetapi, percayakah anda bahwa mainan anak yang canggih dan terbuat dari plastik tersebut suatu saat dapat dibuat dari kulit jeruk.

Jika anda tidak percaya, tanyakan saja pada Geoffrey Coates, seorang profesor bidang kimia dan kimia biologi di Cornell University, New York, Amerika Serikat. Bersama kedua rekannya di grup riset Cornell University, Chris Byrne dan Scott Allen, ia berhasil mengubah kulit jeruk menjadi plastik. Bagaimana caranya?

Mereka menjelaskan bagaimana cara membuat polimer menggunakan limonen oksida sebagai molekul pendukung baru dan karbondioksida menggunakan katalis dalam penelitian di laboratorium. Limonin oksida adalah sejenis karbon dalam bentuk senyawa kimia yang terdapat pada 300 jenis tanaman. Pada buah jeruk, lebih dari 95 persen minyak yang mengandung senyawa tersebut terdapat pada kulit buah jeruk.

Dalam skala industri minyak kulit jeruk ini diekstraksi untuk berbagai macam kegunaan, salah satunya pembersih rumah tangga yang memiliki bau pohon jeruk. Minyak ini kemudian dapat dioksidasi sehingga menghasilkan limonin oksida. Senyawa ini tergolong reaktif dan oleh Coates dan rekannya digunakan sebagai senyawa building block(komponen utama plastik).

Building block lain yang mereka gunakan adalah karbondioksida, yang dikenal sebagai gas atmosfer yang terus meningkat terutama abad ini. Gas ini sebagian besar dihasilkan dari pembakaran bahan bakar fosil(minyak bumi, gas alam, maupun batubara). Gas ini pada akhirnya akan mengancam keberlangsungan lingkungan karena termasuk gas rumah kaca yang pada akhirnya akan mengakibatkan pemanasan global di bumi.

Dengan menggunakan katalis untuk menggabungkan limonen oksida dan karbondioksida, grup riset Coates berhasil memproduksi polimer baru yang dikenal sebagai polilimonin karbonat. Polimer ini ternyata memiliki banyak karakteristik yang sama seperti polistiren. Polistiren bahan plastik yang dibuat dari minyak bumi dan banyak digunakan dalam produk plastik yang bisa dibuang.

Polimer merupakan unit yang berulang pada senyawa kimia, logika sederhananya adalah seperti helaian kertas pada mainan anak. Walaupun nanti suatu saat polimer sebagai plastik pada mainan anak tersebut akan menggunakan komponen pengganti dari limonin oksida ujur Coates. Baik limonen oksida maupun karbondioksida keduanya tidak dapat membentuk dengan polimer dengan sendirinya, akan tetapi harus dicampur sehingga menjadi produk yang diharapkan.

Berdasarkan observasi Coates, kebanyakan plastik yang digunakan saat ini adalah poliester dalam pakaian serta untuk keperluan kemasan makanan dan elektronik. Bahan dasar ini berasal dari minyak bumi sebagai building blok-nya. Dia mengatakan jika kita dapat menggunakan minyak bumi dan menggantinya dengan bahan yang melimpah serta terbaharukan, hal itu merupakan suatu hal yang perlu untuk di investigasi. Hal yang menarik dari sini adalah berkaitan dengan pekerjaan yang sepenuhnya menggunakan bahan baku terbaharukan walaupun pada akhirnya dapat membuat plastik dengan kualitas yang menarik.

Grup riset Coates sangat tertarik dengan penggunaan karbondioksida sebagai building block pada polimer. Sebenarnya gas yang merupakan produk limbah di udara bebas ini dapat disolasi untuk pembuatan plastk, seperti polilimonin karbonat. Laboratorium Coates terdiri atas 18 orang kimiawan dan sebagian besar darinya menggunakan material yang dapat didaur ulang dan biodegradabel (dapat terurai oleh bakteri tanah) serta murah dan melimpah sebagai building block yang ramah lingkungan. Riset Coates ini didukung oleh Packard Foundation fellowship program, the National Science Foundation, the Cornell Center for Materials Research and the Cornell University Center for Biotechnology.